RAJEEV GANDHI GOVT. POST GRADUATE COLLEGE, AMBIKAPUR, SURGUJA (CG), INDIA

Learning Outcomes based Curriculum Framework

FOR

FOUR YEAR UNDERGRADUATE PROGRAMME IN PHYSICS

UNDER COICE BASED CREDIT SYSTEM (CBCS) PATTERN

SESSION 2023-2024

DEPARTMENT OF PHYSICS

VISION

The vision of the Physics Department is to provide in proficiency both in depth understanding of principles and concept of Physics, theoretical and experimental Physics. The Department aims to enhance the students' knowledge in basic and applied physics. To inculcate aptitude for a research career in academia or industry by introducing advanced ideas and techniques that are applicable while emphasizing the underlying concepts of Physics.

MISSION

- 1. To impart quality education in Physics such that they aim to become Scientists in reputed Research Organisations. To make the students effectively disseminate their knowledge in Physics to coming generations..
- 2. Develop the capacity and know how to apply principles/laws of Physics to solve the problems. The ability to do and interpret the data obtained in experiments. To become a center of excellence and extend research facilities.
- 3. Apply the Physics knowledge for sustainable development useful for society. Assume responsibility and always practice ethical principles. To function effectively as individual as well as in a team.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO 1	Professional Skill Development
	To provide professional training and skill development to students in physical sciences, related disciplines and nurture them to become responsible persons in the society.
PEO 2	Core Competency Development
	To augment their core-competencies and knowledge levels in science, humanities and inter-disciplinary areas by imparting education of high standards and advanced technological tools.
PEO 3	Innovative Curriculum of Global Relevance
	To upgrade the curriculum periodically based on scientific advancements, innovations and societal relevance, so as to cater to the shifting global demands.
PEO 4	Environmental Sensitivity and Sustainability
	To infuse environmental sensitivity in students through academic activities and hence equip them with technical skills and scientific knowledge required to protect and safeguard the environment for a sustainable future.
PEO 5	Ethical Principles and Holistic Development
	To promote ethical values and focus on the holistic development of students to become proficient, skilled, competent and socially responsible people.
PEO 6	Accessibility and Academic Excellence
	To provide an accessible learning environment of excellence and equal opportunity to students, enabling them to develop their creativity, critical thinking, and leadership and employability skills.

PO 1	Γο understand concept and theory of their respective subject.								
PO 2	To express thoughts and ideas effectively in writing and orally.								
PO 3	To identify relationship within and across disciplines in the sciences.								
PO 4	To cognitive and technical skills in their field and in multidisciplinary context.								
PO 5	To select and use relevant methods and tools for problem								
PO 6	To make judgment and take decisions based on analysis of data and evidence.								
PO 7	To critically evaluate principles and theory of sciences.								
PO 8	In digital literacy and data analysis.								
PO 9	To find a job in their field, exercise responsibilities to job assigned and start-								
PO 10	To develop a sense of respect and duty towards constitutional, human and								
PO 11	To mitigating the effects of environmental degradations, climate change and pollution.								

PROGRAMME OUTCOMES (POs)

Graduate attributes in Physics

The graduates should be able to demonstrate the capability to:

Disciplinary Knowledge:

• comprehensive knowledge and understanding of their subject area, the ability to engage with different traditions of thought, and the ability to apply their knowledge in practice including in multi-disciplinary or multi-professional contexts.

Problem solving

• Solve different kinds of problems in familiar and non-familiar contexts and apply the learning to real-life situations.

Critical thinking:

- apply analytic thought to a body of knowledge, including the analysis and evaluation of policies, and practices, as well as evidence, arguments, claims, beliefs, and there liability and relevance of evidence,
- Identify relevant assumptions or implications; and formulate coherent arguments.

Creativity

- create, perform ,or think in different and diverse ways about the same objects or scenarios,
- deal with problems and situations that do not have simple solutions,
- innovate and perform tasks in a better manner,
- view a problem or a situation from multiple perspectives,
- Think 'out of the box' and generate solutions to complex problems in unfamiliar contexts, adopt innovative, imaginative, lateral thinking, interpersonal skills and emotional intelligence.

Communication Skills:

- listen carefully, read texts and research papers analytically, and present complex in formation in a clear and concise manner to different groups/audiences,
- express thoughts and ideas effectively in writing and orally and communicate with others using appropriate media,
- confidently share views and express herself/himself,
- construct logical arguments using correct technical language related to a field of

learning, work/vocation, or an area of professional practice,

convey ideas, thoughts ,and arguments using language that is respectful and sensitive to gender and other minority groups.

Analytical reasoning/thinking

- evaluate the liability and relevance of evidence;
- Identify logical flaws in the argument soothers;
- Analyze and synthesize data from a variety of sources;
- Draw valid conclusions and support them with evidence and examples, and addressing opposing view points

Research-related skills:

- A keen sense of observation, inquiry, and capability for asking relevant/ appropriate questions
- The ability to problem arise, synthesize and articulate issues and design research proposals,
- The ability to define problems, formulate appropriate and relevant research questions, formulate hypotheses, test hypotheses using quantitative and qualitative data, establish hypotheses, make inferences based on the analysis and interpretation of data, and predict cause-and-effect relationships,
- The capacity to develop appropriate methodology and tools of data collection,
- The appropriate use of statistical and other analytical tools and techniques,
- The ability to plan, execute and report the result so fan experiment or investigation,
- The ability to acquire the understanding of basic research ethics and skills in practicing/doing ethics in the field/in personal research work, regardless of the funding authority or field of study.

Coordinating/collaborating with others:

- Work effectively and respectfully with diverse teams,
- Facilitate cooperative or coordinate effort on the part of a group,
- Act together as a group or at remain the interest so far common cause and work efficiently as a member of a team

Learning how to learn' skills:

• acquire new knowledge and skills, including 'learning how to learn' skills, that are necessary for pursuing learning activities throughout life, through self-paced and self-directed learning aimed at personal development, meeting economic, social, and

cultural objectives, and adapting to changing trades and demands of the workplace, including adapting to the changes in work processes in the context of the fourth industrial revolution, through knowledge/skill development/re skilling,

- work independently, identify appropriate resources required for further learning,
- Acquire or generational skills and time management to set self-defined goals and targets with timelines.
- Inculcate a healthy attitude to be a lifelong learner

Digital and technological skills

- Use ICT in a variety of learning and work situations,
- access, evaluate, and use a variety of relevant information sources,

Use appropriate software for analysis of data

Multicultural competence and inclusive spirit

- the acquisition of knowledge of the values and belief so multiple cultures and a global perspective to honour diversity,
- capability to effectively engage in a multicultural group/society and interact respectfully with diverse groups,

• capability to lead diverse team to accomplish common group tasks and goals. Gender sensitivity and adopt gender-neutral approach, as also empathy to the less advantaged and the differently-able including those with learning disabilities.

Value inculcation

- embrace and practice constitutional, humanistic ,ethical, and moral values in life, including universal human values of truth, righteous conduct, peace, love, non-violence, scientific temper, citizenship values,
- practice responsible global citizenship required for responding to contemporary global challenges, enabling learners to become aware of and understand global issues and to become active promoters of more peaceful, tolerant, inclusive, secure, and sustainable societies,
- identify ethical issues related to work, and follow ethical practices, including avoiding unethical behaviour such as fabrication, falsification or misrepresentation of data, or committing plagiarism, and adhering to intellectual property rights,
- Recognize environmental and sustainability issues, and participate in actions to promote sustainable development.
- Adopt objective, unbiased, and truthful actions in all aspects of work,

Instill integrity and identify ethical issues related to work, and follow ethical practices

PROGRAMME SPECIFIC OUTCOMES (PSOs)

PSO 1	Acquire scientific temper leading to critical thinking and research motivation in Physics and its allied areas.
PSO 2	Gain knowledge and the skills to measure some of the properties of solid materials and understand the underlying principles governing the dynamics of rigid bodies.
PSO 3	Appreciate the principles of optics, electricity and magnetism and their applications in daily life.
PSO 4	Design and construct electronic circuits with computer interfacing for sophisticated analysis of material behavior and properties.
PSO 5	Comprehend algebraic concepts and advanced mathematical tools involved in the interpretation of various physical properties of materials.
PSO 6	Attain the required skills to interpret the Physics behind the phenomena occurring in nature and surroundings and hence apply them to enhance our life style.
PSO 7	Develop essential logical and analytical skills to approach a problem both quantitatively and qualitatively.

Qualification descriptors for a UG programs in Physics

The qualification descriptors for a **Four year undergraduate programme in Physics** may include the following.

The graduates should be able to:

• Demonstrate

(i) a fundamental/systematic or coherent understanding of the academic field of Physics, its different learning areas like Astrophysics, Material science, Nuclear and Particle Physics, Condensed matter Physics, Atomic and Molecular Physics, Mathematical Physics, Analytical dynamics, Space science and applications, and its linkages with related disciplinary areas/subjects like Chemistry, Mathematics, Life sciences, Environmental sciences, Atmospheric Physics, Computer science, Information Technology;

(ii) procedural knowledge that creates different types of professionals related to different areas of study in Physics outlined above, including research and development, teaching and government and public service;

(iii) skills in areas related to specialization area relating the subfields and current developments in the academic field of Physics.

- Use knowledge, understanding and skills required for identifying problems and issues relating to Physics, collection of relevant quantitative and/or qualitative data drawing on a wide range of sources from various Physics laboratories of the world, and their application, analysis and evaluation using methodologies as appropriate to Physics for formulating new theories and concepts.
- Communicate the results of studies undertaken accurately in a range of different contexts using the main concepts, constructs and techniques of Physics. Develop communication abilities to present these results in technical as well as popular science meetings organized in various universities and other private organizations.
- Ability to meet one's own learning needs, drawing on a range of current research and development work and professional materials, and interaction with other physicists around the world.
- Apply one's knowledge of Physics and theoretical and laboratory skills to new/unfamiliar contexts to identify and analyse problems and issues and solve complex problems in Physics and related areas with well-defined solutions.
- Demonstrate Physics-related technological skills that are relevant to Physics-related job trades and employment opportunities.

The Programme learning outcomes relating to undergraduate Course in Physics:

The student graduating with the Degree should be able to

• Acquire

(i) a fundamental/systematic or coherent understanding of the academic field of Physics, its different learning areas and applications in basic Physics like Astrophysics, Material science, Nuclear and Particle Physics, Condensed matter Physics, Atomic and Molecular Physics, Mathematical Physics, Analytical dynamics, Space science, and its linkages with related disciplinary areas / subjects like Chemistry, Mathematics, Life sciences, Environmental sciences, Atmospheric Physics, Computer science, Information Technology;

(ii)procedural knowledge that creates different types of professionals related to the disciplinary/subject area of Physics, including professionals engaged in research and development, teaching and government/public service;

(iii)skills in areas related to one's specialization area within the disciplinary/subject area of Physics and current and emerging developments in the field of Physics.

- Demonstrate the ability to use skills in Physics and its related areas of technology for formulating and tackling Physics-related problems and identifying and applying appropriate physical principles and methodologies to solve a wide range of problems associated with Physics.
- Recognize the importance of mathematical modeling simulation and computing, and the role of approximation and mathematical approaches to describing the physical world.
- Plan and execute Physics-related experiments or investigations, analyze and interpret data/information collected using appropriate methods, including the use of appropriate software such as programming languages and purpose-written packages, and report accurately the findings of the experiment/investigations while relating the conclusions/findings to relevant theories of Physics.
- Demonstrate relevant generic skills and global competencies such as (i) problem-solving skills that are required to solve different types of Physics-related problems with well-defined solutions, and tackle open-ended problems that belong to the disciplinary-area boundaries; (ii) investigative skills, including skills of independent investigation of Physics-related issues and problems; (iii) communication skills involving the ability to listen carefully, to read texts and research papers analytically and to present complex information in a concise manner to different groups/audiences of technical or popular nature; (iv)

analytical skills involving paying attention to detail and ability to construct logical arguments using correct technical language related to Physics and ability to translate them with popular language when needed; (v) ICT skills; (vi) personal skills such as the ability to work both independently and in a group.

• Demonstrate professional behavior such as (i) being objective, unbiased and truthful in all aspects of work and avoiding unethical, irrational behavior such as fabricating, falsifying or misrepresenting data or committing plagiarism; (ii)the ability to identify the potential ethical issues in work-related situations; (iii) appreciation of intellectual property, environmental and sustainability issues; and (iv) promoting safe learning and working environment.

The Four year undergraduate programme in physics is divided into eight semesters. The syllabus and schemes of examination are detailed herewith.

Curricular framework and credit system for the four year undergraduate programme in Physics

semester	Code name	Paper name	Theory Credit	Practical Credit	Total Credit
	VACPHY-01	Basic Physics of Nanotechnology-I	2	-	2
	SECPHY-01	Electronic Instrumentation-I	-	2	2
	DOODUN 04	DSC-PHYSICS: Mechanics	3	-	4
Sem	D2CLUI-01	DSC-LAB-I: Mechanics	-	1	
B.Sc. (Physics) 9		GEC-PHYSICS: GENERAL PROPERIES OF MATTER	3	-	
	GECPHY-01	GEC-LAB-I: GENERAL PROPERIES OF MATTER	-	1	4

semester	Code name	Paper name	Theory Credit	Practical Credit	Total Credit
	VACPHY-02	Bas Basic Physics of Nanotechnology-II	2	-	2
Π	SECPHY-02	Electronic Instrumentation-II	2	-	2
SemI	DOCDUN 02	DSC-PHYSICS: ELECTRICITY AND MAGNETISM	3	-	4
sics) S	DSCPHI-02	DSC-LAB-II: ELECTRICITY AND MAGNETISM	-	1	
. (Phy		GEC- MATHEMATICAL PHYSICS	3	-	
B.Sc.	GECFHI-UZ	GEC-TUTORIAL-I: MATHEMATICAL PHYSICS-I	-	1	4

DEPARTMENT OF PHYSICS, RAJEEV GANDHI GOVT. P.G. COLLEGE, AMBIKAPUR (CG), INDIA

semester	Code name	Paper name	Theory Credit	Practical Credit	Total Credit
	VACPHY-03		2	-	2
I	SECPHY-03		2	-	2
emII		DSC-PHYSICS: THERMAL PHYSICS	3	-	4
cs) Se	D3CF111-05	DSC-LAB-II: THERMAL PHYSICS	-	1	
(Phys	DODDUN 04	DSEC- DIGITAL SYSTEM AND APPLICATIONS	3	-	
B.Sc. (DSEPHY-01	DSEC-TUTORIAL-: DIGITAL SYSTEM AND APPLICATIONS	-	1	4

semester	Code name	Paper name	Theory Credit	Practical Credit	Total Credit
	VACPHY-04		2	-	2
Λ	SECPHY-04		2	-	2
Seml		DSC-PHYSICS: WAVES AND OPTICS	3	-	4
B.Sc. (Physics) S	D3PHIC-04	DSC-LAB-II: WAVES AND OPTICS	-	1	
	DSEDUV 02	DSEC- MATHEMATICAL PHYSICS-II	3	-	
	D3ELUI-07	GEC-TUTORIAL-: MATHEMATICAL PHYSICS-II	-	1	4

semester	Code name	Paper name	Theory Credit	Practical Credit	Total Credit
	VACPHY-05		2	-	2
	SECPHY-05		2	-	2
	DSCPHY-05	DSC-PHYSICS: ELEMENTS OF MODERN PHYSICS	3	-	4
1		DSC-LAB-II: ELEMENTS OF MODERN PHYSICS	-	1	
semV		DSEC- QUANTUM MECHANICS	3	-	
B.Sc. (Physics) S	DSEPHY-03	DSEC-TUTORIAL-I: QUANTUM MECHANICS	-	1	4
	CECDUV 02	DEC- QUANTUM MECHANICS	3	-	
	GECPHI-03	GEC-TUTORIAL-I: QUANTUM MECHANICS	-	1	4

semester	Code name	Paper name	Theory Credit	Practical Credit	Total Credit
	SECPHY-06		2	-	2
	DSCDHV 06	DSC-PHYSICS: SOLID STATE PHYSICS-I	3	-	4
	D3CFH1-00	DSC-LAB-II: SOLID STATE PHYSICS-I	-	1	
Ν		DSEC- ANALOG SYSTEM AND APPLICATIONS	3	-	
B.Sc. (Physics) Sem ¹	DSEPHY-04	DSEC-LAB: ANALOG SYSTEM AND APPLICATIONS	-	1	4
		GEC- ANALOG SYSTEM AND APPLICATIONS	3	-	
	GECPHY-04	GEC-LAB: ANALOG SYSTEM AND APPLICATIONS	-	1	4

semester	Code name	Paper name	Theory Credit	Practical Credit	Total Credit
	DSCPHV-07	DSC-PHYSICS: SOLID STATE PHYSICS-II	3	-	4
	D3CF111-07	DSC-LAB: SOLID STATE PHYSICS-II	-	1	
IIV-	DSEPHY-05	DSEC- ELECTROMAGNETIC THEORY	3	-	
cs) Sem.		DSEC-LAB: ELECTROMAGNETIC THEORY	-	1	4
Physic		DSEC- NUCLEAR & PARTICLE PHYSICS-I	3	-	
B.Sc. (F	DSEPHY-06	DSEC-LAB: NUCLEAR & PARTICLE PHYSICS-I	-	1	4
	DSEDUV 07	DSEC- STATISTICAL MECHANICS	3	-	4
	DSELUI-01	DSEC-LAB: STATISTICAL MECHANICS	-	1	

semester	Code name	Paper name	Theory Credit	Practical Credit	Total Credit
	DSCDUV 00	DSC-PHYSICS: PHYSICS OF DEVICES AND INSTRUMENTS	3	-	4
	DSCPHI-08	DSC-LAB: PHYSICS OF DEVICES AND INSTRUMENTS	-	1	
IIIV	DSEPHY-08	DSEC- NUCLEAR & PARTICLE PHYSICS-II	3	-	
ics) Sem		DSEC-LAB: NUCLEAR & PARTICLE PHYSICS-II	-	1	4
Physi		DSEC- ELECTRONICS	3	-	
B.Sc. (DSEPHY-09	DSEC-LAB: ELECTRONICS	-	1	4
	DCEDUV 10	DSEC- APPLIED OPTICS	3	-	4
	D2564U1-10	DSEC-LAB: APPLIED OPTICS	-	1	

DEPARTMENT OF PHYSICS, RAJEEV GANDHI GOVT. P.G. COLLEGE, AMBIKAPUR (CG), INDIA

Discipline Specific Core Course (DSCPHY-01)

Semester-I

Paper: Mechanics

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Understand laws of motion and their application to various dynamical situations.

CO-02: Learn the concept of inertial reference frames and Galilean transformations. Also, the concept of conservation of energy, momentum, angular momentum and apply them to basic problems.

CO-03: Understand translational and rotational dynamics of a system of particles.

CO-04: Apply Kepler's laws to describe the motion of planets and satellite in circular orbit.

CO-05: Understand concept of Geosynchronous orbits

CO-06: Explain the phenomenon of simple harmonic motion.

CO-07: Understand special theory of relativity - special relativistic effects and their effects on the mass and energy of a moving object.

CO-08: In the laboratory course, the student shall perform experiments related to mechanics: compound pendulum, rotational dynamics (Flywheel), elastic properties (Young Modulus and Modulus of Rigidity), fluid dynamics, estimation of random errors in the observations etc.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO-08	PO- 09	PO-10	PO- 11
CO-01	\checkmark										
CO-02			~					√			
CO-03	~									~	
CO-04					~	~					
CO-05			✓					~			
CO-06		✓			✓				~		
CO-07	~							~			~
CO-08			~				~		~		

PAPER CODE: PSCC-1T Credit: (Theory-03, Practical-1), Theory: 4									
APER CODE: PSCC-1T Credit: (Theory-03, Practical-1), Theory: 45 Hours, Practical: 30 Hours									
PAPER TITLE: MECHANICS									
THEORY MARKS: 100 (SEE: 80 & CCA : 20)									
PRACTICAL MARKS: 50 Ouestion Pattern i) Objective Type Question MCO. Fill up the blanks. Type/False Total, 10.0									
ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q.									
iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.									
Fundamentals of Dynamics: Reference frames, Inertial frames	nes, Non-inertial frames and								
their characteristic properties, fictitious forces. Uniformly re-	otating frame. Centrifugal force								
5 1 invariance, Impulse.	i transformations, Gamean								
Rotational Dynamics: angular momentum of	a rigid body, Angular								
momentum of a particle and system of particles. P	hysical significance of angular								
between moment of inertia and angular momentum, Princi	ple of conservation of angular								
H momentum. Rotation about a fixed axis. Mome	ent of inertia, physical								
Significance of moment of inertia, theorem aves related to moment of inertia. Kinetic energy of rotation	of parallel and perpendicular								
axes related to moment of mertia, Kinetic energy of rotation.									
Gravitation and Central Force Motion: Law of gravitation.	Gravitational potential energy.								
Inertial mass, gravitational mass and their characteristic prop spherical shell and solid sphere	perties, Potential and field due to								
H Motion of a particle under a central force field:	Central force and its								
S characteristic properties, Two-body problem, its red Kopler's Laws Satellite in circular orbit	luction to one- body problem.								
Repier's Laws. Satemite in circular orbit,									
Oscillations: Definition and characteristic properties of SHM, 7	Types of Oscillation, Differential								
\mathbf{A} equation of SHM and its solution. Kinetic energy, potentia	l energy, total energy and their								
N O									
1. An Introduction to Mechanics (2/e), Daniel Kleppner & Ro	bert Kolenkow, 2014,								
Cambridge University Press.									
 2. Mechanics Berkeley Physics Course, Vol. 1, 2/e: Charles K Education. 	ittel, et. al., 2017, McGraw Hill								
G 3. Theory and Problems of Theoretical Mechanics, Murray I Education.	R. Spiegel, 1977, McGraw Hill								
4. Intermediate Dynamics, Patrick Hamill, 2010, Jones and Ba	artlett Publishers.								
5. Analytical Mechanics, G. R. Fowles and G. L. Cassiday, 20	005, Cengage Learning.								

E E	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion
ticu	
raci 02 C	
L E	

B.Sc.-I **FIRST SEMESTER COURSE CODE: DSCPHY-1LAB** PAPER CODE: PSCC-1P Practical: 30 Hours Credit: Practical-1, PAPER TITLE: DSC-LAB: MECHANICS PRACTICAL MARKS: 50 CO: At the end of this course, the students will be able to To get the knowledge about use of various measuring instruments. > To get understand about the simple harmonic motion, elasticity, surface tension and viscosity. **Topics (Course contents)** A tentative list lab work that can be amended by teacher /department concerned. 1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope. 2. To determine the g with the help of Barton's Pendulum 3. Study of laws of parallel and perpendicular axes for moment of inertia. 4. Moment of inertia of Fly wheel. 5. Moment of inertia of irregular bodies by inertia table. 6. Study of conservation of momentum in two dimensional oscillations. 7. Study of a compound pendulum. 8. Study of damping of a bar pendulum under various mechanics. **30 Hours** 9. Study of oscillations under a bifilar suspension. 10. Study of modulus of rigidity by Maxwell"s needle. 11. Determination of Y, k, η by Searl^s apparatus. 12. To study the oscillation of a rubber band and hence to draw a potential energy curve from it. 13. To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g 14. Study of torsion of wire (static and dynamic method). 15. Poisson's ratio of rubber tube. 16. Study of bending of a cantilever or a beam. 17. Study of flow of liquids through capillaries. 18. Determination of surface tension of a liquid. 19. Study of viscosity of a fluid by different methods. > e-Resources / e-books and e-learning portals for Physics **Online resources** Use of following sites https://www.e-booksdirectory.com/physics.php https://www.pdfdrive.com/category/66 https://www.e-booksdirectory.com/listing.php?category=2 https://www.openculture.com/free-physics-textbooks https://bookboon.com/en/physics-ebooks https://www.pdfdrive.com/ https://zlibrarv.to/

Generic Elective Course (GECPHY-01)

Semester-I

Paper: GENERAL PROPERTIES OF MATTERS

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Laws of motion and their application to various dynamical situations, and their applications to conservation of momentum, angular momentum and energy.
CO-02: Application of Kepler's laws to describe the motion of satellites in circular orbit.
CO-03: Concept of stress and strain and relation between elastic constants
CO-04: Postulates of Special Theory of Relativity, Lorentz transformation, relativistic effects on the mass and energy of a moving body.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark					~					
CO-02			~			~			~		
CO-03			~		~	~					~
CO-04									~		

B.A/B.C	OMI FIRST SEMESTER COURSE CODE: GECPHY-01							
PAPER C	ODE: PGEC-1T Credit: (Theory-03, Practical-1), Theory: 45 Hours, Practical: 30 Hours							
PAPER T	ITLE: GENERAL PROPERTIES OF MATTERS							
THEORY MARKS: 100 (SEE: 80 & CCA: 20) PRACTICAL MARKS: 50								
Question Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.								
Recapitulation of Vectors and Ordinary Differential Equation: Vector algebra, scalar and vector product, gradient of a scalar field, divergence and curl of vectors field.								
UNIT-2 14 Hours	Elasticity : Concept of stress and strain, Hooke's law, twisting torque on a wire, tensile strength, relation between elastic constants, Poisson's ratio,							
UNIT-3 10Hrs	Gravitation and Central Force Motion: Law of gravitation. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere Motion of a particle under a central force field: Two-body problem, its reduction to one- body problem, Kepler's Laws. Satellite in circular orbit.							
UNIT-4 10 Hrs	Special Theory of Relativity: Postulates of Special Theory of Relativity, Lorentz transformation, length contraction, time dilation, relativistic transformation of velocity, relativistic variation of mass, mass-energy equivalence							
S	1. An Introduction to Mechanics (2/e), Daniel Kleppner & Robert Kolenkow,							
NG	2014, Cambridge University Press.							
READI	 Mechanics Berkeley Physics Course, Vol. 1, 2/e: Charles Kittel, et. al., 2017, McGraw Hill Education. 							
STED	3. Theory and Problems of Theoretical Mechanics, Murray R. Spiegel, 1977, McGraw Hill Education.							
GGE	4. Intermediate Dynamics, Patrick Hamill, 2010, Jones and Bartlett Publishers.							
SU	5. Analytical Mechanics, G. R. Fowles and G. L. Cassiday, 2005, Cengage Learning.							
Practicum (02 Credit)	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion							

B.A./B.C	OM-I	FIRST SEMEST	ER COURSE CODE: GECPHY-1:LAB
PAPER C	ODE: PGEC-1P	Credit: Practical-1,	Practical: 30 Hours
PAPER T	ITLE: GEC-LAB:	GENERAL PROPERTIES OF N	IATTERS
PRACTIC	AL MARKS: 50		
CO:	At the end of this c	course, the students will be	e able to
$\succ T$	o get the knowledge	about use of various measu	uring instruments.
× 1	o gei undersiand al	oui the simple harmonic mo	mon, elasticuy, surface tension and viscosuy.
A tentative	e list lab work that ca	Topics (Course cor n be amended by teacher /der	ntents) partment concerned.
	1. Measure microsc	ments of length (or diamon	eter) using vernier caliper, screw gauge and travelling
		2. To determine the g wi	th the help of Barton's Pendulum
		3. Study of laws of para	llel and perpendicular axes for moment of inertia.
		4. Moment of inertia of	Fly wheel.
		5. Moment of inertia of	irregular bodies by inertia table.
		6. Study of conservatio	n of momentum in two dimensional oscillations.
		7. Study of a compound	l pendulum.
		8. Study of damping of	a bar pendulum under various mechanics.
urs		9. Study of oscillations	under a bifilar suspension.
Но		10. Study of modulus of r	rigidity by Maxwell"s needle.
30		11. Determination of Y, k	r, η by Searl"s apparatus.
		12. To study the oscillat draw a potential end	tion of a rubber band and hence to ergy curve from it.
		13. To study the Motion of g	of a Spring and calculate (a) Spring Constant (b) Value
		14. Study of torsion of w	ire (static and dynamic method).
		15. Poisson's ratio of rub	ber tube.
		16. Study of bending of a	a cantilever or a beam.
		17. Study of flow of liqui	ds through capillaries.
		18.Determination of sur	face tension of a liquid.
		19.Study of viscosity of	a fluid by different methods.
		a. e-Resources /	e-books and e-learning portals for Physics
səɔ.	> Use of foll	owing sites	
our	https://w	ww.e-booksdirectory.com/r	physics.php
res	https://www.	<u>w.pdfdrive.com/category/66</u> w.e-booksdirectory.com/list	2 ing php?category=2
ine	https://www.	w.openculture.com/free-phy	<u>vsics-textbooks</u>
ilu(https://boo	<u>kboon.com/en/physics-eboc</u>	<u>ks</u>
)	https://ww	https://zlibrary.to/	

Value added Course (VACPHY-01)

Semester-I

Paper: BASIC PHYSICS OF NANO TECHNOLOGY-I

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Understand the basics of nanotechnology.

CO-02: Learn about types, properties of different nanotechnologies.

CO-03: Understand the basic concepts of tools and techniques in nanotechnologies

CO-04: Learn about uses and applications of nanotechnologies.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark										
CO-02			~		~			~			
CO-03	✓									√	
CO-04					~			\checkmark			~

B.SCI	FIRST SEMESTER COURSE CODE: VACPHY-01					
PAPER C	ODE: PVAC-1T Credit: (Theory-02), Theory: 30 Hours,					
PAPER T	ITLE: BASIC PHYSICS OF NANO TECHNOLOGY-I					
THEORY	MARKS: 50 (CCA: 50)					
Question	Pattern -i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.					
UNIT-1 15Hours	Definition of nanotechnology, why Nanotechnology, tools and techniques, Field of Molecular Nanotechnology, uses of Nanotechnology					
UNIT-2 15 Hours	Basic idea of nanotechnology, Techniques used in Technology (types, advantages, drawbacks and their characteristics), Tools used in nanotechnology (types, advantages, drawbacks and their characteristics)					
	1. Understanding of Nanotechnology by D.G. Sauder					
STED	2. Basics Of Nanotechnology by Bohra And L S Bio Green Publisher					
SUGGI READ	3. Introduction to Nanoscience and Nanotechnology by k.k. chattopadhay, PHI Publication					
Practicum (02 Credit)	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion					

Skill Enhancement Course (SECPHY-01)

Semester-I

Paper: ELECTRONIC INSTRUMENATATION-I

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Understanding the physics of the devices their characteristics and applications, to be able to use them in electronic circuits.

CO-02: Students would be aware of various signal conditioning, processing and generation techniques thus being better equipped to understand their use in larger and complex systems.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark	~				~		\checkmark	~		
CO-02		\checkmark	~			~			~		~

B.SCI	FIRST SEMESTER COURSE CODE: SECPHY-01						
PAPER C	ODE: PSEC-1T Credit: (Theory-02), Theory: 30 Hours,						
PAPER T	ITLE: ELECTRONIC INSTRUMENATATION-I						
THEORY	MARKS: 50 (CCA: 50)						
Question Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.							
UNIT-1 15Hours	Qualities of Measurement: Specifications of instruments, their static and dynamic characteristics, Error (Gross error, systematic error, absolute error and relative error) and uncertainty analysis. Statistical analysis of data and curve fitting						
UNIT-2 15 Hours	Measurement of Resistance and Impedance: Low Resistance by Kelvin's double bridge method, Medium Resistance by Wheatstone bridge method, High Resistance by Megger. Measurement of Self Inductance by Maxwell's bridge, , Measurement of Capacitance by Schering's bridge, Measurement of frequency by Wien's bridge.						
LAB	 Design of multi range ammeter and voltmeter using galvanometer. Measurement of resistance by Wheatstone bridge and measurement of bridge sensitivity. Measurement of Capacitance by de'Sautys. Measure of low resistance by Kelvin's double bridge. To determine the Characteristics of resistance transducer - Strain Gauge (Measurement of Strain using half and full bridge.) 						
SUGGESTED READINGS	 H. S. Kalsi, Electronic Instrumentaion, TMH(2006) W.D. Cooper and A. D. Helfrick, Electronic Instrumentation and Measurement Techniques, PrenticeHall (2005). Instrumentation Measurement and analysis: Nakra B C, Chaudry K, TMH E.O.Doebelin, Measurement Systems: Application and Design, McGraw Hill Book - fifth Edition (2003). Joseph J Carr, Elements of Electronic Instrumentation and Measurement, Pearson Education (2005) David A. Bell, Electronic Instrumentation and Measurements, Prentice Hall (2013). 7. Oliver and Cage, "Electronic Measurement and Instrumentation", TMH (2009). Alan S. Morris, "Measurement and Instrumentation Principles", Elsevier (ButerworthHeinmann2008). A. K Sawhney, Electrical and Electronics Measurements and Instrumentation, DhanpatRai and Sons (2007). C. S. Rangan, G. R. Sarma and V. S. Mani, Instrumentation Devices and Systems, Tata Mcgraw Hill (1998). 						
Practicum (02 Credit)	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion						

Discipline Specific Core Course (DSCPHY-02)

Semester-II

Paper: Electricity and Magnetism

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Demonstrate the application of Coulomb's law for the electric field, and also apply it to systems of point charges as well as line, surface, and volume distributions of charges.

CO-02: Demonstrate an understanding of the relation between electric field and potential, exploit the potential to solve a variety of problems, and relate it to the potential energy of a charge distribution.

CO-03: Apply Gauss's law of electrostatics to solve a variety of problems.

CO-04: Calculate the magnetic forces that act on moving charges and the magnetic fields due to currents (Biot- Savart and Ampere laws)

CO-05: Understand the concepts of induction and self-induction, to solve problems using Faraday's and Lenz's laws.

CO-06: Understand the basics of electrical circuits and analyze circuits using Network Theorems.

CO-07: In the laboratory course the student will get an opportunity to verify network theorems and study different circuits such as RC circuit, LCR circuit. Also, different methods to measure low and high resistance, capacitance, self-inductance, mutual inductance, strength of a magnetic field and its variation in space will be learnt.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	✓			~				~	~		
CO-02			~		~			~	~		
CO-03				~		~				~	
CO-04				~							
CO-05	~										~
CO-06	~										~
CO-07				✓	~	~			~		

B.ScII	SECOND SEMESTER COURSE CODE: DSCPHY-02
PAPER C	ODE: PSCC-2T Credit: (Theory-03, Practical-1), Theory: 45 Hours, Practical: 30 Hours
PAPER T	ITLE: Electricity and Magnetism
THEORY PRACTIC	MARKS: 100 (SEE: 80 & CCA : 20) CAL MARKS: 50
Question	Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q.
	ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q.
	iv) Long Answer Type- Word Limit 500-600, Total-5 Q.
UNIT-1 11Hours	 Electric Field and Electric Potential: Coulomb's law in vacuum expressed in Vector forms, dipole and Quadrupole, Gauss's law and its application: E due to (1) an Infinite Line of Charge, (2) a Charged Cylindrical Conductor, (3) an Infinite Sheet of Charge. Dielectric Properties of Matter: Dielectric, types of dielectrics, Polarization Vector P, Displacement vector D. Relations between E, P and D, Gauss' Lawin dielectrics, Classisus Mossotti Equation,
UNIT-2 14 Hours	Magnetic Field : Biot-Savart's Law and its simple applications: straight wire and circular loop. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole), Ampere"s Circuital law (Integral and Differential Forms), Torque on a current loop in a uniform Magnetic Field
UNIT-3 10Hrs	Electrical Circuits : Kirchhoff's Current Law& Kirchhoff's Voltage Law for AC circuits. power consumed by an a AC circuit, power factor. Electromagnetic Induction : Faraday's Law, integral and differential forms of Faraday's law, Transformers,
UNIT-4 10 Hrs	Network theorems : Thevenin theorem, Norton theorem, Superposition theorem, Reciprocity Theorem, Maximum Power Transfer theorem.
SUGGESTED READINGS	 Berkeley Physics Course, Electricity and Magnetism, Ed. E.M. Purcell (Mc Graw-Hill). Halliday and Resnik, Physics, Vol. 2. D J Grifith, Introduction to Electrodynamics (Prentice-Hall of India). Raitz and Milford, Electricity and Magnetism (Addison-Wesley). A S Mahajan and A A Rangwala, Electricity and Magnetism (Tata Mc Graw-hill). A M Portis, Electromagnetic fields. Pugh & Pugh, Principles of Electricity and Magnetism (Addison-Wesley). Panofsky and Phillips, Classical Electricity and Magnetism, (India Book House). S S Atwood, Electricity and Magnetism (Dover). Advanced Practical Physics for students, B. L. Flint and H. T. Worsnop, 1971, Asia Publishing House. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage Learning India Pvt. Ltd.Practical Physics, G. L. Squires, 2015, 4/e, Cambridge University Press. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11/e, 2011, Kitab Mahal.
Practicum (02 Credit)	

DEPARTMENT OF PHYSICS, RAJEEV GANDHI GOVT. P.G. COLLEGE, AMBIKAPUR (CG), INDIA

B.ScII	SECOND SEMESTER COURSE CODE: DSCPHY-2LAB
PAPER C	ODE: PSCC-2P Credit: Practical-1, Practical: 30 Hours
PAPER T	ITLE: DSC-LAB: ELECTRICITY AND MAGNETISM
PRACTIC	CAL MARKS: 50
CO:	At the end of this course, the students will be able to
$\rightarrow T$	o get the knowledge about use of various measuring instruments.
$\succ T$	o get understand about the FORTRAN, CAND C++, DIFFERENT ELECTRICAL MEASURING
	DEVICES. Topics (Course contents)
A tentative	e list lab work that can be amended by teacher /department concerned.
	1. To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c)
	2. Use of a vibration magnetometer to study a field.
	3. Study of magnetic field B due to a current.
	4. Measurement of low resistance by Carey-Foster bridge.
	2. Measurement of inductance using impedance at different frequencies.
	3. Study of decay of currents in LR and RC circuits.
	4. Response curve for LCR circuit and response frequency and quality factor.
	5. Study of waveforms using cathode-ray oscilloscope.
	6. Characteristics of a choke and Measurement of inductance.
	7. Study of Lorentz force.
	8. Study of discrete and continuous LC transmission line.
ILS	9. Elementary FORTRAN programs, Flowcharts and their interpretation.
Hou	10. To find the product of two matrices.
30]	12. To find the roots of quadratic equation.
	13. To find the product of two matrices.
	14. Numerical solution of equation of motion.
	15. To find the roots of quadratic equation.
	16. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency,
	(b) Impedance at resonance, (c) Quality factor Q, and (d) Band width.
	17. To study the response curve of a parallel LCR circuit and
	determine its (a) Anti-resonant frequency and (b) Quality factor.
	18. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer
	19. Determine a high resistance by leakage method using Ballistic Galvanometer.
	20. To determine self-inductance of a coil by Rayleigh's method.
	To determine the mutual inductance of two coils by Absolute method.

ces	e-Resources / e-books and e-learning portals for Physics								
	Use of following sites								
Inc	https://www.e-booksdirectory.com/physics.php								
OS	https://www.pdfdrive.com/category/66								
re	https://www.e-booksdirectory.com/listing.php?category=2								
ne	https://www.openculture.com/free-physics-textbooks								
nli	https://bookboon.com/en/physics-ebooks								
ō	https://www.pdfdrive.com/								
	https://zlibrary.to/								

Generic Elective Course (GECPHY-02)

Semester-II

Paper: MATHEMATICAL PHYSICS

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Understand functions of several variables.

CO-02: Represent a periodic function by a sum of harmonics using Fourier series and their applications in physical problems such as vibrating strings etc.

CO-03: Learn about gamma and beta functions and their applications.

CO-04: Solve linear partial differential equations of second order with separation of variable method.

CO-05: Understand the basic concepts of complex analysis and integration.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark										✓
CO-02			~		~				~		
CO-03								\checkmark			
CO-04			~	~						~	
CO-05	✓										

B.A/B.C	OMII SECOND SEMESTER COURSE CODE: GECPHY-02								
PAPER C	ODE: PGEC-1T Credit: (Theory-03, Practical-1), Theory: 45 Hours, Tutorial: 30 Hours								
PAPER T	ITLE: MATHEMATICAL PHYSICS								
THEORY	MARKS: 100 (SEE: 80 & CCA : 20)								
PRACTIC	AL MARKS: 50								
Question	ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q.								
	iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.								
UNIT-1 11Hours	Fourier series: Periodic functions. Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Fourier Cosine Series and Fourier Sine Series								
UNIT-2 14 Hours	Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of integrals in terms of Gamma Functions								
UNIT-3 10Hrs	Partial Differential Equations: Multivariable functions, Partial derivatives, Functions Solutions to partial differential equations, using separation of variables:								
UNIT- 4 10 Hrs	Complex Analysis: Functions of complex variable, Analytic function, Cauchy-Riemann equations, singular points, Cauchy Residue Theorem, Cauchy's Integral Formula, Residues, Cauchy's Residue Theorem.								
SUGGESTED READINGS	 Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India. Complex Variables and Applications, J. W. Brown and R. V. Churchill, 7th Ed. 2003, Tata McGraw-Hill Advanced Mathematics for Engineers and Scientists: Schaum Outline Series, M. R Spiegel, 2009, McGraw Hill Education. Applied Mathematics for Engineers and Physicists, L.A. Pipes and L.R. Harvill, 2014, Dover Publications. Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd Ed., 2006, Cambridge University Press. 								
Practicum (02 Credit)	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion								

Value added Course (VACPHY-02)

Semester-I

Paper: BASIC PHYSICS OF NANO TECHNOLOGY-II

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Understand the basics of nanomaterials.CO-02: Learn about types, properties of different nanomaterials.CO-03: Understand the basic concepts of production of nanomaterialsCO-04: Learn about uses and applications of nanomaterials.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark									~	
CO-02			~		~			~			
CO-03	~								~		~
CO-04					~			~			

B.SCII	SECO	ND SEMESTER		COURSE CODE: VACPHY-02					
PAPER C	DDE: PVAC-2T Cred	it: (Theory-02),	Theory: 30 Hours,						
PAPER T	TLE: BASIC PHYSICS OF N	ANO TECHNOLOGY	-11						
THEORY	MARKS: 50 (CCA: 50)							
Question	Pattern-i) Objective Type Que ii) Very Short Answer iii) Short Answer Type iv) Long Answer Type-	stion-MCQ, Fill up th Type- Word Limit 7 2- Word Limit 200-2 Word Limit 500-60	1e blanks, True/False, Total 0-100, Total-5 Q. 50, Total-5 Q. 0, Total-5 Q.	- 10 Q.					
UNIT-1 15Hours	Definition of nanomate nanomaterials, applicat	rials, Properties tions of nanomat	of nanomaterials, meth erials	ods of produce					
UNIT-2 15 Hours	Definition of Carbon nanomaterials, carbon nanomaterials (Types, uses, Properties, production and applications) , idea of carbon nanotubes, nanotubes (Types, uses, Properties, production and applications), idea of nanowires, nanowires (Types, Properties, uses, production and applications),								
ESTE))INGS	1. PRINC	CIPLES OF NANOS	CIENCE AND NANOTECH	NOLOGY BY M.A. SHAH					
SUGG I REAL	2. Introd	luction to Nanoele	ctronics by Mitin , Cambr	idge india publisher					
Practicum (02 Credit)	Peer/Micro teaching, Class	Seminar, Quiz, Gr	oup Discussion						

Skill Enhancement Course (SECPHY-02)

Semester-II

Paper: ELECTRONIC INSTRUMENATATION-II

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Understanding the physics of the devices their characteristics and applications, to be able to use them in electronic circuits.

CO-02: Students would be aware of various signal conditioning, processing and generation techniques thus being better equipped to understand their use in larger and complex systems.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark					~			~		~
CO-02			~		$\checkmark\checkmark$	\checkmark				~	
B.SCII	SECOND SEMESTER COURSE CODE: SECPHY-02										
-----------------------------	--	--	--	--	--	--	--	--	--	--	
PAPER C	ODE: PSEC-2T Credit: (Theory-02), Theory: 30 Hours,										
PAPER T	PAPER TITLE: ELECTRONIC INSTRUMENATATION-II										
THEORY MARKS: 50 (CCA: 50)											
Question	Question Pattern -i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100. Total-5 O.										
	iii) Short Answer Type- Word Limit 200-250, Total-5 Q.										
	N) Long Answer Type- word Limit 500-600, Total-5 Q.										
1 rs	synchronization, measurement of voltage, frequency and phase by CRO.										
-TI Iou	Power scope: Block diagram, principle and working, Advantages and applications, CRO										
UN L5H	specifications (bandwidth, sensitivity, rise time). Signal Generators: Audio oscillator, Pulse										
	Generator, Function generators										
	Transducers and sensors: Classification of transducers, Basic requirement/characteristics of										
	transducers, active & passive transducers, Resistive (Potentiometer, Strain gauge – Theory, types,										
r-2 urs	- Variable Permittivity type). Inductive (LVDT) and piezoelectric transducers. Measurement of										
NIN NI	temperature (RTD, thermistor, thermocouple, semiconductor IC sensors), Light transducers										
U 15	(photoresistors, photovoltaic cells, photodiodes).										
	1. To determine the Characteristics of resistance transducer - Strain Gauge (Measurement of Strain										
	using half and full bridge.)										
	 To determine the Characteristics of LVDT. To determine the Characteristics of Thermistors and RTD 										
AB	 Measurement of temperature by Thermocouples and study of transducers like AD590 (two 										
Ē	terminal temperature sensor), PT-100, J- type, K-type.										
	5. To study the Characteristics of LDR, Photodiode, and Phototransistor: (1) Variable Illumination. (ii) Linear Displacement.										
	 Characteristics of one Solid State sensor/ Fiber optic sensor 										
	R. P. Bali Consumer Electronics Pearson Education (2008)										
7.0	2. R. G. Gupta Audio and Video systems Tata McGraw Hill (2004)										
NGS											
II											
REA											
I O											
STI											
GE											
SUG											

E E	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion
ticu	
raci 02 C	
L E	

Discipline Specific Core Course (DSCPHY-03) SEMESTER-III

Paper: Thermal Physics

Course Learning Outcomes

Course Learning Outcomes

At the end of the course, students will be able to:

CO-01: Comprehend the basic concepts of thermodynamics, the first and the second law of thermodynamics.

CO-02: Understand the concept of entropy and the associated theorems, the thermodynamic potentials and their physical interpretations.

CO-03: Know about reversible and Irreversible processes.

CO-04: Learn about Maxwell's relations and use them for solving many problems in Thermodynamics

CO-05: Understand the concept and behavior of ideal and real gases.

CO-06: Learn the basic aspects of kinetic theory of gases, Maxwell-Boltzman distribution law, equitation of energies, mean free path of molecular collisions, viscosity, thermal conductivity, diffusion and Brownian motion.

CO-07: In the laboratory course, the students are expected to do some basic experiments in thermal Physics, viz., determination of Mechanical Equivalent of Heat (J), coefficient of thermal conductivity of good and bad conductor, temperature coefficient of resistance, variation of thermo-emf of a thermocouple with temperature difference at its two junctions and calibration of a thermocouple.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark				~	~			~		
CO-02	~		~								~
CO-03	✓									~	
CO-04						~		√			
CO-05	~										~
CO-06			~		~			√			
CO-07				~	~	~			~		

B.ScIII	THIRD SEMESTER COURSE CODE: DSCPHY-03								
PAPER CODE:PSCC-3TCredit: (Theory-03, Practical-1),Theory: 45 Hours, Practical: 30 Hours									
PAPER T	PAPER TITLE: THERMAL PHYSICS								
THEORY	THEORY MARKS: 100 (SEE: 80 & CCA: 20)								
PRACTICAL MARKS: 50									
Question	Question Fattern -1J Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 O.								
	iii) Short Answer Type- Word Limit 200-250, Total-5 Q.								
	Zeroth and First Law of Thermodynamics: Extensive and intensive Thermodynamic Variables								
UNIT-1 15 Hours	, Zeroth Law of Thermodynamics & Concept of Temperature, First Law of Thermodynamics and its differential form, Internal Energy, Work Done during Isothermal and Adiabatic Processes, Second Law of Thermodynamics: Carnot's Cycle, Carnot Engine & efficiency, 2 nd Law of Thermodynamics: Kelvin Planck and Clausius Statements and their Equivalence. Carnot's Theorem. Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale.								
UNIT-2 10 Hours	Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy. Entropy of a perfect gas. Principle of Increase of Entropy. Entropy Changes in Reversible and Irreversible processes with examples. Principle of Increase of Entropy. Temperature–Entropy diagrams for Carnot's Cycle. Third Law of Thermodynamics.								
UNIT-3 10 Hours	 Thermodynamic Potentials: Internal Energy, Enthalpy, Helmholtz Free Energy, Gibb"s Free Energy. Their Definitions, Properties and Applications. Clausius Clapeyron Equation and Ehrenfest equations. Maxwell's Thermodynamic Relations: Derivation of Maxwell"s thermodynamic Relations and their applications, Maxwell's Relations:(1) Clausius Clapeyron equation, (2) Value of Cp-Cv, (3) Tds Equations, (4) Energy equations. 								
UNIT-4 10 Hours	Real Gases: Deviations from the Ideal Gas Equation. Andrew"s Experiments on CO ₂ Gas, Virial Equation. Critical Constants van der Waal"s Equation of State for Real Gases. Values of Critical Constants Free Adiabatic Expansion of a Perfect Gas. Joule- Thomson Porous Plug Experiment. Joule-Thomson Effect for Real and vander Waal Gases. Temperature of Inversion. Joule-Thomson Cooling.								
SUGGESTED READINGS	 Heat and Thermodynamics: M.W. Zemansky and R.Dittman, (Tata McGraw-Hill.) A Treatise on Heat :M.N.Saha and B.N.Srivastava, 1958 (Indian Press.) Thermal Physics: S. C.Garg, R. M. Bansal and C. K. Ghosh (Tata McGraw-Hill.) Thermodynamics, Kinetic Theory & Statistical Thermodynamics :Sears and Salinger (Narosa). Concepts in Thermal Physics: Blundell and Blundell (Oxford Univ. press) 								
Practicum (02 Credit)	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion								

DEPARTMENT OF PHYSICS, RAJEEV GANDHI GOVT. P.G. COLLEGE, AMBIKAPUR (CG), INDIA

B.ScIII	THIRD SEMESTER COURSE CODE: DSCPHY-3LAB									
PAPER C	ODE: PSCC-3P Credit: Practical-1, Practical: 30 Hours									
PAPER T	ITLE: DSC-LAB: THERMAL PHYSICS									
PRACTIC	PRACTICAL MARKS: 50									
CO	At the and of this source, the students will be able to									
CO: T	At the end of this course, the students will be able to									
$\succ T$	o get understand about the simple harmonic motion, elasticity, surface tension and viscosity.									
A tentative	e list lab work that can be amended by teacher /department concerned.									
	1. To determine Mechanical Equivalent of Heat, J, by Callender and Barne's constant flow									
	2. To determine the Coefficient of Thermal Conductivity of Cu by Searle's Apparatus.									
	3. To determine the Coefficient of Thermal Conductivity of Cu by Angstrom"s Method.									
rs	4. To determine the Coefficient of Thermal Conductivity of a bad conductor by Lee and									
noj	Charlton''s disc method.									
30 H	5. To determine the Temperature Coefficient of Resistance by Platinum Resistance Thermometer (PRT)									
	6. To study the variation of Thermo-emf of a Thermocouple with Difference of Temperature of									
	its Two Junctions using a null method. And also calibrate the Thermocouple in a									
	specified temperature range. 7 To collibrate a thermocourble to measure temperature in a specified Pange using Op									
	Amp difference amplifier and to determine Neutral Temperature.									
	e-Resources / e-books and e-learning portals for Physics									
ces	Use of following sites									
ouro	https://www.e-booksdirectory.com/physics.php									
eso	https://www.pdfdrive.com/category/66									
er	<u>https://www.e-booksdirectory.com/listing.php?category=2</u>									
llin	 <u>nups://www.openculture.com/Iree-pnysics-textbooks</u> https://bookboon.com/en/physics-ebooks 									
0n	https://www.pdfdrive.com/									
	https://zlibrary.to/									

Discipline Specific Elective Course (DSEPHY-01) SEMESTER-III

Paper: Digital Systems and Applications

Course Learning Outcomes

Course Learning Outcomes

This course lays the foundation for understanding the digital logic circuits and their use in combinational and sequential logic circuit design. It also imparts information about the basic architecture, memory and input/output organization in a microprocessor system. The students also learn the working of CRO.

CO-01:Course learning begins with the basic understanding of active and passive components.

It then builds the concept of Integrated Chips (IC): its classification and uses.

CO-02:Differentiating the Analog and Digital circuits, the concepts of number systems like Binary,BCD, Octal and hexadecimal are developed to elaborate and focus on the digital systems.

CO-03:Sequential Circuits: Basic memory elements Flips-Flops, shift registers and 4-bits counters leading to the concept of RAM, ROM and memory organization.

CO-04:Timer circuits using IC 555 providing clock pulses to sequential circuits and develop multivibrators.

CO-05:Introduces to basic architecture of processing in an Intel 8085 microprocessor and to Assembly Language.

CO-06:Also impart understanding of working of CRO and its usage in measurements of voltage, current, frequency and phase measurement.

CO-07: In the laboratory students will learn to construct both combinational and sequential circuits by employing NAND as building blocks and demonstrate Adders, Subtractors, Shift Registers, and multivibrators using 555 ICs. They are also expected to use μP 8085 to demonstrate the same simple programme using assembly language and execute

the programme using a μ P kit.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark							~			~
CO-02			~		~				~		
CO-03									~	✓	
CO-04		~				~			✓		
CO-05									~		✓
CO-06		~			~						
CO-07				~	~	~			✓		

B.ScIII	THIRD SEMESTERCOURSE CODE: DSEPHY-01									
PAPER C	ODE: PDEC-1T Credit: (Theory-03, Practical-1), Theory: 45 Hours, Practical: 30 Hours									
PAPER T	PAPER TITLE: Digital Systems and Applications									
THEORY	THEORY MARKS: 100 (SEE: 80 & CCA: 20)									
PKAULICAL MARKS: 50 Ouestion Pattern -i) Objective Type Ouestion-MCO. Fill up the blanks. True/False. Total- 10 O.										
ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q.										
	iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.									
UNIT-1 L5 Hours	Digital Circuits: Difference between Analog and Digital Circuits, Examples of linear and digital ICs, Binary Numbers, Decimal to Binary and Binary to Decimal Conversion, BCD, Octal and Hexadecimal numbers, AND, OR and NOT Gates (realisation using Diodes and Transistor), NAND and NOR Gates as Universal Gates, XOR and XNOR Gates and application as Parity Checkers									
UNIT-2 1 13 Hours 1	 and application as Parity Checkers. Boolean algebra: De Morgan's Theorems, Boolean Laws, Simplification of Logic Circuit using Boolean Algebra, Fundamental Products, Idea of Minterms and Maxterms, Conversion of Truth table into Equivalent Logic Circuit by (1) Sum of Products Method and (2) Karnaugh Map. Data processing aircuits: Multipleyers, De multipleyers, Deceders, Enceders, Enced									
UNIT-3 07 Hours	 Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement, Half and Full Adders, Half & Full Subtractors, 4-bit binary Adder/Subtractor. Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip- Flops. Preset and Clear operations. Race-around conditions in JK Flip-Flop. M/S JK Flip- Flop. 									
UNIT-4 10 Hours	Timers: IC 555 block diagram and applications: Astable multivibrator and Monostable multivibrator.Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and Parallel- in- Parallel-out Shift Registers (only up to 4 bits).Counters (4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous Counter.									
SUGGESTED READINGS	 Digital Principles and Applications, A.P.Malvino, D.P.Leach and G. Saha, 8th Ed., 2018, Tata McGraw Hill Education. Fundamentals of Digital Circuits, Anand Kumar, 4th Edn, 2018, PHI Learning Pvt. Ltd. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill Microprocessor Architecture Programming & applications with 8085, 2002, R.S. Goankar, Prentice Hall. Digital Computer Electronics, A.P. Malvino, J.A. Brown, 3rd Edition, 2018, Tata McGraw Hill Education.Digital Design, Morris Mano, 5th Ed. Pearson. 									
Practicum (02 Credit)	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion									

DEPARTMENT OF PHYSICS, RAJEEV GANDHI GOVT. P.G. COLLEGE, AMBIKAPUR (CG), INDIA

B.ScIII		THIRD SEMESTER COURSE CODE: DSEPHY-1LAB								
PAPER C	ODE: PD	SEC-1P Credit: Practical-1, Practical: 30 Hours								
PAPER T	PAPER TITLE: DSEC-LAB: Digital Systems and Applications									
PRACTIC	PRACTICAL MARKS: 50									
Topics (Course contents)										
A tentative	e list lab wo	ork that can be amended by teacher /department concerned.								
	Section	n-A: Digital Circuits Hardware design/Verilog Design								
	1.	To design a combinational logic system for a specified Truth Table.								
		(a) To convert Boolean expression into logic circuit & design it using logic gate ICs								
		(b) To minimize a given logic circuit.								
	2.	Half Adder, Full Adder and 4-bit binary Adder.								
	3.	Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.								
	4.	To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.								
	5.	To build JK Master-slave flip-flop using Flip-Flop ICs								
	6.	To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.								
	7.	To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.								
Hours	8.	To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO and to design an astable multivibrator of given specifications using 555 Timer.								
30	9.	9. To design a monostable multivibrator of given specifications using 555 Timer.								
	Section	n-B: Programs using 8085 Microprocessor:								
	1.	Addition and subtraction of numbers using direct addressing mode								
	2.	Addition and subtraction of numbers using indirect addressing mode								
	3.	Multiplication by repeated addition.								
	4.	Division by repeated subtraction.								
	5.	Handling of 16-bit Numbers.								
	6.	Use of CALL and RETURN Instruction.								
	7.	Block data handling.								
	8.	Parity Check								
	9.	Other programs (e.g. using interrupts, etc.).								

Online resources	 e-Resources / e-books and e-learning portals for Physics Use of following sites https://www.e-booksdirectory.com/physics.php https://www.pdfdrive.com/category/66 https://www.e-booksdirectory.com/listing.php?category=2 https://www.openculture.com/free-physics-textbooks https://bookboon.com/en/physics-ebooks https://bookboon.com/en/physics-ebooks 							
	https://zlibrary.to/							
SUGGESTED READINGS	 Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGraw Hill Basic Electronics: A text lab manual, P.B.Zbar, A.P.Malvino, M.A.Miller, 1994, Mc- Graw Hill. Microprocessor 8085: Architecture, Programming and interfacing, A.Wadhwa, 2010, PHI Learning 							

Discipline Specific Core Course (DSCPHY-04)

Semester-IV

Paper: Waves and Optics

Course Learning Outcomes

On successfully completing the requirements of this course, the students will have the skill and knowledge to:

CO-01: Understand Simple harmonic oscillation and superposition principle.

CO-02: Understand different types of waves and their velocities: Plane, Spherical, Transverse, Longitudinal.

CO-03: Understand Concept of normal modes in transverse and longitudinal waves: their frequencies and configurations.

CO-04: Understand Interference as superposition of waves from coherent sources derived from same parent source.

CO-05: Demonstrate basic concepts of Diffraction: Superposition of wavelets diffracted from aperture, understand Fraunhoffer and Fresnel Diffraction.

CO-06: In the laboratory course, student will gain hands-on experience of using various optical instruments and making finer measurements of wavelength of light using Newton Rings experiment, Fresnel Biprism etc. Resolving power of optical equipment can be learnt first hand. The motion of coupled oscillators, study of Lissajous figures and behaviour of transverse, longitudinal waves can be learnt in this laboratory course.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark										~
CO-02	\checkmark		~			√					
CO-03	~									~	
CO-04	✓										~
CO-05						~	~		~		
CO-06		~			~	~			√		

B.ScIV	V FOURTH SEMESTER COURSE CODE: DSCPHY-04									
PAPER C	PAPER CODE: PDSC-4T Credit: (Theory-03, Practical-1), Theory: 45 Hours, Practical: 30 Hours									
PAPER T	ITLE: WAVES AND OPTICS									
THEORY	THEORY MARKS: 100 (SEE: 80 & CCA: 20)									
PRACTICAL MARKS: 50										
Question	ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q.									
iii) Short Answer Type- Word Limit 200-250, Total-5 Q.										
IV) Long Answer Type- word Limit 500-600, Total-5 Q. Wave Motion: Longitudinal and Transverse Waves Plane Progressive (Travelling) Waves										
-1 urs	Wave Equation. Particle and Wave Velocities. Pressure of a Longitudinal Wave.									
UIT- Hou	Wave Optics: Electromagnetic nature of light. Definition and properties of wave front. Huygens									
UN 12	r meipie.									
	Superposition of Two Harmonic Wayes: Standing (Stationary) Wayes in a String: Fixed and									
2 Irs	Free Ends. Analytical Treatment. Phase and Group Velocities Normal Modes of Stretched									
JIT- Hou	Strings. Open and Closed Pipes.									
UN 101										
	Interference: Young's double slit experiment Lloyd's Mirror and Fresnel's Biprism Fringes									
••••••	of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's									
IT-3 Hrs	Rings: Measurement of wavelength and refractive index.									
UNI 15	Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theory required), (2) Determination of Wavelength (3) Wavelength Difference (4) Refractive Index and (5)									
	Visibility of Fringes. Fabry-Perot interferometer.									
	Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope.									
[- 4 lrs	Double slit. Diffraction grating. Resolving power of grating. Fresnel Diffraction : Fresnel's Assumptions Fresnel's Half-Period Zones for Plane									
INIT 12 F	Wave Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel's Integral,. Straight									
1	edge, a slit and a wire.									
ED	1. Vibrations and Waves, A.P. French, 1 st Edn., 2003, CRC press.									
EST	2. Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill									
GGI EAD	3. The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.									
SU RI	4. The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.									
t) a	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion									
icuı edi										
act 2 Cr										
Pr (0:										

B.ScIV		FOURTH SEMESTER COURSE CODE: DSCPHY-4LAB								
PAPER C	ODE:	PDSEC-4P Credit: Practical-1, Practical: 30 Hours								
PAPER T	ITLE:	DSCC-LAB: WAVES AND OPTICS								
PRACTIC	AL MA	ARKS: 50								
		Tonics (Course contents)								
A tentative	e list lak	work that can be amended by teacher /department concerned.								
At least 06 experiments from the following:										
	1.	To determine the frequency of an electric tuning fork by Melde's experiment and verify $\lambda 2$ –T law.								
	2.	To investigate the motion of coupled oscillators.								
	3.	To study Lissajous Figures.								
	4.	Familiarization with: Schuster's focusing; determination of angle of prism.								
	5.	To determine refractive index of the Material of a prism using sodium source.								
Hours	6.	To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.								
301	7.	To determine the wavelength of sodium source using Michelson's interferometer.								
	8.	To determine wavelength of sodium light using Fresnel Biprism.								
	9.	To determine wavelength of sodium light using Newton's Rings.								
	10.	To determine the thickness of a thin paper by measuring the width of the interference								
		fringes produced by a wedge-shaped Film.								
	11.	To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.								
	. 12.	To determine dispersive power and resolving power of a plane diffraction grating.								
S		e-Resources / e-books and e-learning portals for Physics								
rce:	\triangleright	Use of following sites								
ino		https://www.e-booksdirectory.com/physics.php https://www.pdfdrive.com/category/66								
rea		https://www.e-booksdirectory.com/listing.php?category=2								
ne i		https://www.openculture.com/free-physics-textbooks								
nli		https://bookboon.com/en/physics-ebooks								
0		<u>https://www.pdfdrive.com/</u>								
		https://zlibrary.to/								

EADINGS	1.	Advanced Practical Physics for students, B.L.Flint and H.T.Worsnop, 1971, Asia Publishing House
	2.	A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Ed., 2011,Kitab Mahal
STED F	3.	Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
UGGES	4.	A Laboratory Manual of Physics for undergraduate classes, D.P. Khandelwal, 1985, Vani Pub.
S	5	Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press

Discipline Specific Elective Course (DSEPHY-02) SEMESTER-IV

Paper: Mathematical Physics-II

Course Learning Outcomes

Course Learning Outcomes

After completing this course, student will be able to

CO-01: Determine continuity, differentiability and analyticity of a complex function, find the derivative of a function and understand the properties of elementary complex functions.

CO-02: Work with multi-valued functions (logarithmic, complex power, inverse trigonometric function) and determine branches of these functions

CO-03: Evaluate a contour integral using parametrization, fundamental theorem of calculus and Cauchy's integral formula.

CO-04: Find the Taylor series of a function and determine its radius of convergence.

CO-05: Determine the Laurent series expansion of a function in different regions, find the residues and use the residue theory to evaluate a contour integral and real integral.

CO-06: Understand the properties of Fourier and Laplace transforms and use these to solve boundary value problems.

CO-07: In the laboratory course, the students will learn the basics of the Scilab software/Python interpreter and apply appropriate numerical method to solve selected physics problems both using user defined and inbuilt functions from Scilab/Python.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	✓										~
CO-02	~		~							~	
CO-03						~			~		
CO-04			~			~					√
CO-05			~					~		\checkmark	
CO-06	~				~						
CO-07			~		~	~			~		

B.ScIV	FOURTH SEMESTER COURSE CODE: DSEPHY-02									
PAPER C	APER CODE: PSDEC-2T Credit: (Theory-03, Practical-1), Theory: 45 Hours, Practical: 30 Hours									
PAPER T	PAPER TITLE: MATHEMATICAL PHYSICS-II									
THEORY	THEORY MARKS: 100 (SEE: 80 & CCA : 20)									
PRACTIC	PRACTICAL MARKS: 50									
Question	Question Pattern -1) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.									
UNIT-1 15 Hours	Complex Analysis: Euler's formula, De-Moivre's theorem, Roots of Complex Numbers. and Cauchy-Riemann Equations. Examples of analytic functions. Singularities: poles, removable singularity, essential singularity, Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem. Application of Contour Integration in solving Definite Integrals.									
UNIT-2 13 Hours	Fourier Transforms:). Fourier Transform (FT). Examples: FT of single pulse, trigonometric, exponential and Gaussian functions. FT of derivatives, Inverse FT, Convolution theorem. Properties of FT s (translation, change of scale, complex conjugation, etc.). Solution of one-dimensional Wave Equation using FT. Fourier Sine Transform (FST) and Fourier Cosine Transform (FCT).									
UNIT-3 07 Hours	Laplace Transforms: Laplace Transform Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to 2nd order Differential Equations.									
UNIT-4 10 Hours	Dirac delta function: Definition and properties. Representation of Dirac delta function as a Fourier Integral. Laplace and Fourier Transform of Dirac delta function.									
SUGGESTED READINGS	 Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd Edition., 2006, Cambridge University Press Complex Variables and Applications, J.W. Brown& R.V. Churchill, 7th Edition. 2003, Tata McGraw-Hill. Laplace Transform: Schaum's Outline, M.R> Speigel, McGraw Hill Education. 									
Practicum (02 Credit)	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion									

B.Sc.-IV

FOURTH SEMESTER

COURSE CODE: DSEPHY-2LAB

PAPER CODE: PDSEC-2P Credit: Practical-1, Practical: 30 Hours

PAPER TITLE: DSEC-LAB: MATHEMATICAL PHYSICS-II

PRACTICAL MARKS: 50

Topics (Course contents) A tentative list lab work that can be amended by teacher /department concerned.

The aim of this Lab is to use the computational methods to solve physical problems. The course will consist of practical sessions and lectures on the related theoretical aspects of the Laboratory course. Evaluation done not only on the basis of programming but also on the basis of formulating the problem. At least ten programs must be attempted taking at least one from each programming section. The program list is only suggestive and students should be encouraged to do more problems. Scilab/C⁺⁺ based simulations experiments based on Mathematical Physics problems like Solve 1 differential equations: $dy/dx = e^{-x}$ with y = 0 for x = 0 $dy/dx + e^{-x}y$ $= x^2 d^2 y/dt^2$ + 2 dy/dt = y d2y/dt2 +e-tdy/dt = -y**30 Hours** 2 Dirac Delta Function: 3 Calculation of least square fitting manually without giving weightage to error. Confirmation of least square fitting of data through computer program. Evaluation of trigonometric functions e.g. sin θ , Given Bessel's 4 function at N points find its value at an intermediate point. Complex analysis: Integrate $1/(x^2+2)$ numerically and check with computer integration. Compute the nth roots of unity for n = 2, 3, and 4. 5 6 Find the two square roots of -5+12i. 7 Integral transform: FFT of Solve Kirchoff's Current law for any node of an arbitrary circuit 8 using Laplace's transform. 9 Solve Kirchoff's Voltage law for any loop of an arbitrary circuit using Laplace's transform. Perform circuit analysis of a general LCR circuit using Laplace's transform.

	e-Resources / e-books and e-learning portals for Physics
ces	Use of following sites
n	https://www.e-booksdirectory.com/physics.php
OS	https://www.pdfdrive.com/category/66
Le	https://www.e-booksdirectory.com/listing.php?category=2
ne	https://www.openculture.com/free-physics-textbooks
nli	https://bookboon.com/en/physics-ebooks
ō	https://www.pdfdrive.com/
	https://zlibrary.to/

Discipline specific core course (DSCPHY-05)

Semester-V

Paper: Elements of Modern Physics

Course Learning Outcomes

Course Learning Outcomes

After getting exposure to this course, the following topics would be learnt:

CO-01: Main aspects of the inadequacies of classical mechanics as well as understanding of the historical development of quantum mechanics.

CO-02: Formulation of Schrodinger equation and the idea of probability interpretation associated with wave-functions.

CO-03: The spontaneous and stimulated emission of radiation, optical pumping and population inversion. Three level and four level lasers. Ruby laser and He-Ne laser in details. Basic lasing

CO-04: The properties of nuclei like density, size, binding energy, nuclear forces and structure of atomic nucleus, liquid drop model and nuclear shell model and mass formula.

CO-05: Decay rates and lifetime of radioactive decays like alpha, beta, gamma decay. Neutrino, its properties and its role in theory of beta decay.

CO-06: Fission and fusion: Nuclear processes to produce nuclear energy in nuclear reactor and stellar energy in stars.

CO-07: In the laboratory course, the students will get opportunity to measure Planck's constant, verify photoelectric effect, determine e/m of electron, Ionization potential of atoms, study emission and absorption line spectra. They will also find wavelength of Laser sources by single and Double slit experiment, wavelength and angular spread of He-Ne Laser using plane diffraction grating.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark						~				~
CO-02			~		~						
CO-03										~	
CO-04			~				~				
CO-05					~						
CO-06			~						✓		✓
CO-07	~					~	~				

B.ScV	FIFTH SEMESTER COURSE CODE: DSCPHY-05								
PAPER C Hours	ODE: PDSC-5T Credit: (Theory-03, Practical-1), Theory: 45 Hours, Practical: 30								
PAPER T	ITLE: Elements of Modern Physics								
THEORY PRACTIC	MARKS: 100 (SEE: 80 & CCA : 20) AL MARKS: 50								
Question	Question Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.								
UNIT-1 13Hours	Blackbody Radiation: Quantum theory of Light; Photo-electric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson-Germer experiment. Wave description of particles by wave packets. Group and Phase velocities and relation between them. Probability. Wave amplitude and wave functions.								
UNIT-2 12 Hours	Schrodinger equation for non-relativistic particles; Momentum and Energy operators; stationary states; physical interpretation of a wave function, probabilities and normalization; Probability and probability current densities in one dimension. energy eigenvalues, eigenfunctions and their normalization;								
UNIT-3 10 Hours	Size and structure of atomic nucleus and its relation with atomic weight; Impossibility of an electron being in the nucleus as a consequence of the uncertainty principle. Nature of nuclear force, N-Z graph, Liquid Drop model: semi-empirical mass formula and binding energy.								
UNIT-4 10 Hours	Radioactivity: stability of the nucleus; Law of radioactive decay; Mean life and half-life; Alpha decay; Beta decay: Fission and fusion: mass deficit, Fission: nature of fragments and emission of neutrons. Fusion and thermonuclear reactions driving stellar evolution (brief qualitative discussions).								
SUGGESTED READINGS	 Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill. Modern Physics by R A Serway, C J Moses and C A Moyer, 3rd edition, Thomson Brooks Cole, 2012. Modern Physics for Scientists and Engineers by S T Thornton and A Rex, 4th edition, Cengage Learning, 2013. Concepts of Nuclear Physics by B L Cohen, Tata McGraw Hill Publication, 1974. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2ndEdn., 2002, Wiley. 								
Practicum (02 Credit)	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion								

PAPER CO	PAPER CODE: PDSCC-5P Credit: Practical-1, Practical: 30 Hours									
PAPER TI	TLE: DSCC-LAB: Elements of Modern Physics									
PRACTICAL MARKS: 50										
Topics (Course contents) A tentative list lab work that can be amended by teacher /department concerned.										
	At least 05 experiments from the following:									
	1. Measurement of Planck's constant using black body radiation and photo-detector.									
	2. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electrons versus frequency of light.									
	3. To determine work function of material of filament of directly heated vacuum diode.									
	4. To determine the Planck's constant using LEDs of at least 4 different colours.									
JLS	5. To determine the wavelength of H-alpha emission line of Hydrogen atom.									
Ηοι	6. To determine the ionization potential of mercury.									
30	7. To determine the absorption lines in the rotational spectrum of Iodine vapour.									
	8. To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.									
	9. To setup the Millikan oil drop apparatus and determine the charge of an electron.									
	10. To show the tunneling effect in tunnel diode using I-V characteristics.									
	11. To determine the wavelength of laser source using diffraction of single slit.									
	12. To determine the wavelength of laser source using diffraction of double slits.									
	13. To determine angular spread of He-Ne laser using plane diffraction grating									
	 e-Resources / e-books and e-learning portals for Physics 									
rces	Use of following sites									
Inos	<u>https://www.e-booksdirectory.com/physics.php</u> <u>https://www.pdfdrive.com/category/66</u>									
e re	https://www.e-booksdirectory.com/listing.php?category=2									
line	 <u>https://www.openculture.com/free-physics-textbooks</u> <u>https://bookboon.com/en/physics-ebooks</u> 									
01	https://www.pdfdrive.com/									
	<u>https://Zlibrary.to/</u>									
KS	Publishing House.									
D B00	 Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers. 									
GESTE	3. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11 th Edition,2011, Kitab Mahal, New Delhi.									
SUG	4. Practical Physics, G.L. Squires, 2015, 4 th Edition, Cambridge University Press.									

Discipline specific Elective course (DSEPHY-03)

Semester-V

Paper: Quantum Mechanics

Course Learning Outcomes

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Understand and explain the differences between classical and quantum mechanics

CO-02: Learn operator formalism for observables and basic commutation relations.

CO-03: Solve Schrödinger equation for simple potentials like linear Harmonic oscillator and Hydrogen atoms.

CO-04: Understand the space, time and displacement symmetries.

CO-05: Formulate the Heisenberg & Dirac formulation of quantum mechanics-explain various types of imperfections in crystals.

CO-06: Solve the linear harmonic oscillator and hydrogen-like atom problems using Dirac formulation-analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques.

CO-07: Demonstrate angular momentum operators associated with spherical and symmetrical systems. -summarize ceramics and its types and relate their applications with properties.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark										
CO-02			~					~		~	~
CO-03				~		~					
CO-04	~										
CO-05						~			~		~
CO-06		~			~					✓	
CO-07			~		~	~			✓		

B.ScV	FIFTH SEMESTER COURSE CODE: DSEPHY-03									
PAPER C	ODE: PDSEC-3T Credit: (Theory-03, Practical-1), Theory: 45 Hours, Practical: 30									
Hours										
PAPER T	ITLE: QUANTUM MECHANICS									
THEORY	MARKS: 100 (SEE: 80 & CCA : 20)									
PRACTIC	PRACTICAL MARKS: 50									
Question	ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q.									
	iii) Short Answer Type- Word Limit 200-250, Total-5 Q.									
s	Desig Destrulates of Overstym Machanics, Internetation of the sizenvalues sizenfunctions									
-1 ours	Basic Postulates of Quantum Mechanics. Interpretation of the eigenvalues eigenfunctions, expectation values, orthonormality, completeness, Dirac bra and ket notation. Dirac δ									
LIN 1	function.									
U 12										
6	Commuting operators, Unitary transformation. Matrix representation of operators. Time									
T-2 our:	evolution and Schrodinger equation. The Schrodinger and Heisenberg pictures.									
JNI 2Hc										
1.1										
10	Operator algebra method of finding energy eigenvalues and eigenstates of the linear harmonic									
oscillator. System of identical particles. Symmetric and antisymmetric wave fund										
HC	exclusion principle. Slater determinant.									
U 11										
, v	Angular momentum in Quantum Mechanics: Commutation relations of angular momentum									
T-4 our	operators.									
INU H 0	Relativistic quantum Mechanics: Klien- Gordon and Dirac equation. Properties of Dirac matrices. Free particle solution of Dirac equation									
1										
GS	1. B H Bransden & C J Joachain, Quantum Mechanics, Pearson Education, 2000.									
NIC	2. R H Shankar, Principles of Quantum Mechanics, Springer 2008.									
EAL	3. J J Sakurai, Modern Quantum Mechanics, Addition- Wessley, 1993.									
DR	4. B Craseman and J Powell, Quantum Mechanics, Addition- Wessley.									
TE	5. S Gasiorowicz, Quantum Physics, Wiley.									
GES	6. Ajoy Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications,									
ng	Springer Science.									
S	Deen Migne teaching Class Seminar Quiz Croup Discussion									
um lit)	reer/micro teaching, class Seminar, Quiz, Group Discussion									
ticu										
rac 12 C										
P (0										

B.ScV	FIFTH SEMESTER COURSE CODE: DSEPHY-3LAB									
PAPER C	ODE: PDSEC-3P Credit: Practical-1, Practical: 30 Hours									
PAPER T	PAPER TITLE: DSCC-LAB: QUANTUM MECHANICS									
PRACTIC	PRACTICAL MARKS: 50									
Topics (Course contents)										
A tentative list lab work that can be amended by teacher /department concerned.										
	1. Study of Electron spin resonance- determine magnetic field as a function of									
urs	the resonance frequency									
Ho	2. Study of Zeeman effect: with external magnetic field; Hyperfine splitting									
30	3. To show the tunneling effect in tunnel diode using I-V characteristics.									
	4. Quantum efficiency of CCDs									
	e-Resources / e-books and e-learning portals for Physics									
səɔ.	Use of following sites									
Inos	https://www.e-booksdirectory.com/physics.php https://www.edfdrive.com/ostocom/66									
res	 https://www.pdrdrive.com/category/86 https://www.e-booksdirectory.com/listing.php?category=2 									
line	<u>https://www.openculture.com/free-physics-textbooks</u>									
0n]	 <u>https://bookboon.com/en/physics-ebooks</u> <u>https://www.pdfdrive.com/</u> 									
	https://zlibrary.to/									
	1. Schaum's outline of Programming with C++. J. Hubbard, 2000, McGraw Hill Publication									
KS	 An introduction to computational Physics, T. Pang, 2nd Edn., 2006, Cambridge Univ. Press 									
ED BOO	3. Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific & Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández.2014 Springer.									
GGEST	 Scilab (A Free Software to Matlab): H. Ramchandran, A.S. Nair. 2011 S. Chand & amp; Co. 									
SU	5. A Guide to MATLAB, B.R. Hunt, R.L. Lipsman, J.M. Rosenberg, 2014, 3rd Edn., Cambridge University Press.									

Generic Elective course (GECPHY-03)

Semester-V

Paper: Quantum Mechanics

Course Learning Outcomes

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Understand and explain the differences between classical and quantum mechanics

CO-02: Learn operator formalism for observables and basic commutation relations.

CO-03: Solve Schrödinger equation for simple potentials like linear Harmonic oscillator and Hydrogen atoms.

CO-04: Understand the space, time and displacement symmetries.

CO-05: Formulate the Heisenberg & Dirac formulation of quantum mechanics-explain various types of imperfections in crystals.

CO-06: Solve the linear harmonic oscillator and hydrogen-like atom problems using Dirac formulation-analyze the mechanisms behind elastic and plastic deformation is solids and compare different strengthening techniques.

CO-07: Demonstrate angular momentum operators associated with spherical and symmetrical systems. -summarize ceramics and its types and relate their applications with properties.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark										
CO-02			~					~			
CO-03				~						~	~
CO-04	~										
CO-05						~	~				
CO-06		~		\checkmark		~					✓
CO-07		~				~			~		

B.ScV	FIFTH SEMESTER COURSE CODE: GECPHY-03									
PAPER C	ODE:PGEC-3TCredit: (Theory-03, Practical-1),Theory: 45 Hours, Practical: 30									
Hours										
PAPER T	ITLE: QUANTUM MECHANICS									
THEORY	MARKS: 100 (SEE: 80 & CCA : 20)									
Ouestion	PRAUTICAL MARKS: 50 Ouestion Pattern -i) Objective Type Question-MCO Fill up the blanks. True / False Total- 10.0									
C	ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q.									
	iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.									
S	Basic Postulates of Quantum Mechanics. Interpretation of the eigenvalues eigenfunctions.									
T-1 Iou	expectation values, orthonormality, completeness, Dirac bra and ket notation. Dirac δ									
UNI 12 E	function.									
2 rs	Commuting operators, Unitary transformation. Matrix representation of operators. Time evolution and Schrodinger equation. The Schrodinger and Heisenberg pictures.									
-TIV Hou										
UN 121										
.3 IIS	oscillator. System of identical particles. Symmetric and antisymmetric wave functions. Pauli's									
VIT- Hou	exclusion principle. Slater determinant.									
11 11										
	Angular momentum in Quantum Machanical Commutation relations of angular momentum									
-4 urs	operators.									
Hou	Relativistic quantum Mechanics: Klien- Gordon and Dirac equation. Properties of Dirac matrices.									
U 10	Free particle solution of Dirac equation.									
s	2. B H Bransden & C J Joachain, Quantum Mechanics, Pearson Education, 2000.									
ING	3. R H Shankar, Principles of Quantum Mechanics, Springer 2008.									
[AD]	4. J J Sakurai, Modern Quantum Mechanics, Addition- Wessley, 1993.									
) RF	5. B Craseman and J Powell, Quantum Mechanics, Addition- Wessley.									
TEI	6. S Gasiorowicz, Quantum Physics, Wiley.									
GES	7. Ajoy Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications,									
5NG	Springer Science.									
	Poor Migro tooching Class Sominar Quiz Crown Discussion									
um lit)	reer/micro teaching, class Seminar, Quiz, Group Discussion									
ctic										
⁵ rac 02 (
Ŀ										

B.ScV	FIFTH SEMESTER COURSE CODE: GECPHY-3LAB							
PAPER CODE: PGEC-3P Credit: Practical-1, Practical: 30 Hours								
PAPER TITLE: DSCC-LAB: QUANTUM MECHANICS								
PRACTICAL MARKS: 50								
Topics (Course contents)								
A tentative	e list lab work that can be amended by teacher /department concerned.							
	5. Study of Electron spin resonance- determine magnetic field as a function of							
Hours	the resonance frequency							
	6. Study of Zeeman effect: with external magnetic field; Hyperfine splitting							
30	7. To show the tunneling effect in tunnel diode using I-V characteristics.							
	8. Quantum efficiency of CCDs							
	e-Resources / e-books and e-learning portals for Physics							
Online resources	 Use of following sites <u>https://www.e-booksdirectory.com/physics.php</u> <u>https://www.pdfdrive.com/category/66</u> <u>https://www.e-booksdirectory.com/listing.php?category=2</u> <u>https://www.openculture.com/free-physics-textbooks</u> <u>https://bookboon.com/en/physics-ebooks</u> <u>https://www.pdfdrive.com/</u> <u>https://zlibrary.to/</u> 							
	1. Schaum's outline of Programming with C++. J. Hubbard, 2000, McGraw Hill Publication							
SUGGESTED BOOKS	2.An introduction to computational Physics, T. Pang, 2nd Edn.,2006, Cambridge Univ. Press							
	 3.Simulation of ODE/PDE Models with MATLAB®, OCTAVE and SCILAB: Scientific & Engineering Applications: A. Vande Wouwer, P. Saucez, C. V. Fernández.2014 Springer. 4.Scilab (A Free Software to Matlab): H. Ramchandran, A.S. Nair. 2011 S. Chand & amp; 							
	Co.5. A Guide to MATLAB, B.R. Hunt, R.L. Lipsman, J.M. Rosenberg, 2014, 3rd Edn., Cambridge University Press.							

Discipline Specific Core Course (DSCPHY-06) Semester-VI Paper: Solid State Physics-I Course Learning Outcomes

Course Learning Outcomes

On successful completion of the module students should be able to

CO-01: Elucidate the concept of lattice, crystals and symmetry operations.

CO-02: Understand the elementary lattice dynamics and its influence on the properties of materials.

CO-03: Describe the main features of the physics of electrons in solids: origin of energy bands, and their influence electronic behavior.

CO-04: Explain the origin of dia-, para-, and ferro-magnetic properties of solids.

CO-05: Explain the origin of the dielectric properties exhibited by solids and the concept of polarizability.

CO-06: Learn the properties of superconductivity in solid.

CO-07: In the laboratory students will carry out experiments based on the theory that they have **MAPPING OF CO (COURSE OUTCOME) AND PO (PROGRAMME OUTCOME)**:

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	✓								~	~	
CO-02	~		~								~
CO-03						~	~				
CO-04							~			√	
CO-05								\checkmark			√
CO-06		~			~						
CO-07						~		✓	~		

B.ScVI	SIXTH SEMESTER	COURSE CODE: DSCPHY-06									
PAPER CODE:PDSC-6TCredit: (Theory-03, Practical-1),Theory: 45 Hours, Practical: 30											
Hours											
PAPER TITLE: SOLID STATE PHYSICS-I											
THEORY MARKS: 100 (SEE: 80 & CCA: 20)											
PRACTICAL MARKS: 50 Question Pattern-i) Objective Type Question-MCO Fill up the blanks True/False Total-10.0											
ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q.											
iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.											
	Crystal Structure and Elementary Lattice Dynamics: Amorphous and Crystallin										
11-5-11	Materials. Lattice with a Basis. Unit Cell. Types of Lattices. Miller Indices.										
NN H	Reciprocal Lattice. Diffraction of X- rays by Crystals. E	fragg s Law.									
	Elementary band theory: Band Gap. Conductors, Semiconductors and in										
r-2 urs	and N- type Semiconductors. Conductivity of Semic	conductors, mobility, Hall Effect,									
LINI Hc	man coentelent.										
10 10											
	Magnetic Properties of Matter: Dia-, Para-, Fer	ri- and Ferro- magnetic									
3 Irs	materials. Classical Langevin Theory of dia– and Para- magnetic Domains. Curie's										
VIT- Hou	of B-H Curve. Hysteresis and Energy Loss.	inagnetic Domains. Discussion									
10 10	Applications: Piezoelectric, Pyroelectric, Ferroelectric,	, Ferromagnetic materials									
4 rs	Depolarization Field Electric Susceptibility Polarization. L	ocal Electric Field at an Atom.									
-TI	Classical Theory of Electric Polarizability.										
UN 10 H	Superconductivity: Experimental Results. Critical	Temperature. Critical magnetic									
	field. Meissner effect. Type I and type II Superconductor	8									
IGS	1 Introduction to Solid State Physics, Charles Kittel, 8	th Ed. 2004. Wiley India Pyt. Ltd									
NIC	2 Elements of Solid State Physics, J.P. Srivastava 2 nd	Ed 2006 Prentice-Hall of India									
REA	3 Introduction to Solids Leonid V Azaroff 2004 Tata Mc Graw Hill										
ED	4 Solid State Physics NW Ashcroft and ND Merm	in 1976 Cengage Learning									
EST	 5. Elementory Solid State Division M Ali Organ 2006 Decrear 										
990	6 Solid State Physics M A Wahah 2011 Narosa Pul										
SU	0. Sond State I hysics, WIA. Wahab, 2011, Walosa I u	Silvarions.									
t) n	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion	on									
icu edi											
act 2 Cr											
Pr (0:											
B.ScVI	SIXTH SEMESTER COURSE CODE: DSCPHY-6LAB										
---	---	--	--	--	--	--	--	--	--	--	--
PAPER C	ODE: PDSCC-6P Credit: Practical-1, Practical: 30 Hours										
PAPER T	ITLE: DSEC-LAB: SOLID STATE PHYSICS-I										
PRACTIC	PRACTICAL MARKS: 50										
Topics (Course contents) A tentative list lab work that can be amended by teacher /department concerned.											
30 Hours	 At least 06 experiments from the following: Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method). To measure the Magnetic susceptibility of solids. To determine the Coupling Coefficient of a piezoelectric crystal. To study the dielectric response of materials with frequency. To determine the complex dielectric constant and plasma frequency of a metal using Surface Plasmon Resonance (SPR) technique. To determine the refractive index of a dielectric material using SPR technique. To study the PE Hysteresis loop of a Ferroelectric Crystal. To draw the BH curve of Iron (Fe) using solenoid & determine the energy loss from Hysteresis loop. To measure the resistivity of a semiconductor (Ge) with temperature (up to 150°C) by four-probe method and determine its band gap. To determine the Hall coefficient of a semiconductor sample. Analysis of X-Ray diffraction data in terms of unit cell parameters and estimation of particle size. 										
Online resources	 e-Resources / e-books and e-learning portals for Physics Use of following sites https://www.e-booksdirectory.com/physics.php https://www.pdfdrive.com/category/66 https://www.e-booksdirectory.com/listing.php?category=2 https://www.openculture.com/free-physics-textbooks https://bookboon.com/en/physics-ebooks https://www.pdfdrive.com/ https://www.pdfdrive.com/ https://www.pdfdrive.com/ https://zlibrary.to/ 										
SUGGESTED BOOKS	 Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press 										

Discipline Specific Elective Course (DSEPHY-04)

Semester-VI

Paper: Analog Systems and Applications

Course Learning Outcomes

Course Learning Outcomes

At the end of this course, the following concepts will be learnt

CO-01: Characteristics and working of pn junction.

CO-02: Two terminal devices: Rectifier diodes, Zener diode, photodiode etc.

CO-03: NPN and PNP transistors: Characteristics of different configurations, biasing, stabilization and their applications.

CO-04: CE and two stage RC coupled transistor amplifier using h-parameter model of the transistor.

CO-05: Designing of different types of oscillators and their stabilities.

CO-06: Ideal and practical op-amps: Characteristics and applications.

CO-07: In the laboratory course, the students will be able to study characteristics of various diodes and BJT. They will be able to design amplifiers, oscillators and DACs. Also different applications using Op-Amp will be designed.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark										
CO-02			~								~
CO-03					~				✓		
CO-04	~		~								
CO-05		~				~			~		
CO-06		~			~						~
CO-07			~			~		√			

B.ScVI	SIXTH SEMESTER	COURSE CODE: DSEPHY-4							
PAPER C	ODE: PDSEC-4T Credit: (Theory-03, Practical-1),	Theory: 45 Hours, Practical: 30							
Hours									
PAPER TITLE: AnalogSystems and Applications									
THEORY	THEORY MARKS: 100 (SEE: 80 & CCA : 20)								
PRACTIC	AL MARKS: 50								
Question	Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/F	False, Total- 10 Q.							
	iii) Short Answer Type- Word Limit 70-100, 10tal-5 Q.								
	iv) Long Answer Type- Word Limit 500-600, Total-5 Q.								
(T-1 Hours	Semiconductor Diodes: P and N type semiconductor Diodes: P and N type semiconductor Conductivity and Mobility, Concept of Drift velocity.PN Japanese Formation in PN Junction Diode. Derivation for Bar	ctors. Energy Level Diagram. unction Fabrication (Simple Idea). rrier Potential, Barrier							
UNI 10 F	Width and Current for abrupt Junction. Equation of con Mechanism in Forward and Reverse Biased Diode.	ntinuity, Current Flow							
UNIT-2 10 Hours	Two-terminal Devices and their Applications: (1 Rectifiers. Centre-tapped and Bridge Full-wave Rectifier and Rectification Efficiency, C-filter, (2) Zener Di Principle, structure and characteristics of (1) LED, (2) Qualitative idea of Schottky diode and Tunnel diode.) Rectifier Diode: Half-wave ers, Calculation of Ripple Factor iode and Voltage Regulation. Photodiode and (3) Solar Cell,							
UNIT-3 10 Hours	Bipolar Junction transistors: n-p-n and p-n-p Tra CB and CE Configurations. Active, Cutoff and Saturation Relations between α and β . Load Line analysis of Transi Physical Mechanism of Current Flow.	insistors. I-V characteristics of n Regions. Current gains α and β . istors. DC Load line and Q-point.							
UNIT-4 10 Hours	 Feedback in Amplifiers: Positive and Negative Feedback feedback on Input Impedance, Output Impedance, Gain, Noise. Sinusoidal Oscillators: Barkhausen's Criterion for self-shift oscillator, determination of Frequency. Hartley & Colpitts 	ck. Effect of negative Stability, Distortion and sustained oscillations. RC Phase oscillators							

	1.	Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-
		Graw Hill. Electronics: Fundamentals and Applications, J.D. Ryder,
NGS		2004, Prentice Hall.
ADI	2.	Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall
SUGGESTED RE/	3.	Microelectronic circuits, A.S. Sedra, K.C. Smith, A.N. Chandorkar, 2014, 6th Edn., Oxford University Press. Semiconductor Devices: Physics and Technology, S.M. Sze, 2nd Ed., 2002, Wiley India
	4.	Electronic Principles, A. Malvino, D.J. Bates, 7th Edition, 2018, Tata Mc-Graw Hill Education
	5.	Electronic Devices & circuit Theory, R.L. Boylestad & L.D. Nashelsky, 2009, Pearson
Practicum (02 Credit)	Peer	/Micro teaching, Class Seminar, Quiz, Group Discussion

B.ScVI	SIXTH SEMESTER COURSE CODE: DSEPHY-4LAB									
PAPER C	ODE: PDSEC-4P Credit: Practical-1, Practical: 30 Hours									
PAPER T	ITLE: DSEC-LAB: AnalogSystems and Applications									
PRACTICAL MARKS: 50										
	Topics (Course contents)									
A tentative	A tentative list lab work that can be amended by teacher /department concerned.									
	At least 08 experiments from the following:									
	1. To study the V-I characteristics of a Zener diode and its use as voltage regulator.									
	2. Study of V-I & power curves of solar cells and find maximum power point & efficiency.									
	3. To study the characteristics of a Bipolar Junction Transistor in CE configuration.									
	4. To study the various biasing configurations of BJT for normal class A operation.									
	5. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.									
	6. To study the frequency response of voltage gain of a two stage RC-coupled transistor amplifier.									
	7. To design a Wien bridge oscillator for given frequency using an op-amp.									
ILS	8. To design a phase shift oscillator of given specifications using BJT.									
Hou	9. To design a digital to analog converter (DAC) of given specifications.									
30	10. To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain									
	11. (a) To design inverting amplifier using Op-amp (741,351) & study its frequency response									
	(b) To design non-inverting amplifier using Op-amp (741,351) and study frequency response									
	12. (a) To add two dc voltages using Op-amp in inverting and non-inverting mode									
	(b) To study the zero-crossing detector and comparator.									
	13. To design a precision Differential amplifier of given I/O specification using Op-amp.									
	14. To investigate the use of an op-amp as an Integrator.									
	15. To investigate the use of an op-amp as a Differentiator.									
	16. To design a circuit to simulate the solution of simultaneous equation and 1st/2ndorder									
	e-Resources / e-books and e-learning portals for Physics									
seo.	Use of following sites									
Ino	https://www.e-booksdirectory.com/physics.php									
res	 <u>https://www.pdfdrive.com/category/66</u> <u>https://www.e-booksdirectory.com/listing.php?category=2</u> 									
ine	https://www.openculture.com/free-physics-textbooks									
llnC	https://bookboon.com/en/physics-ebooks https://www.pdfdrive.com/									
	https://zlibrary.to/									

SUGGESTED	 Basic Electronics: A text lab manual, P.B.Zbar, A.P.Malvino, M.A.Miller, 1994, Mc-
BOOKS	Graw Hill. OP-Amps.

Generic Elective Course (GECPHY-04)

Semester-VI

Paper: Analog Systems and Applications

Course Learning Outcomes

Course Learning Outcomes

At the end of this course, the following concepts will be learnt

CO-01: Characteristics and working of pn junction.

CO-02: Two terminal devices: Rectifier diodes, Zener diode, photodiode etc.

CO-03: NPN and PNP transistors: Characteristics of different configurations, biasing, stabilization and their applications.

CO-04: CE and two stage RC coupled transistor amplifier using h-parameter model of the transistor.

CO-05: Designing of different types of oscillators and their stabilities.

CO-06: Ideal and practical op-amps: Characteristics and applications.

CO-07: In the laboratory course, the students will be able to study characteristics of various diodes and BJT. They will be able to design amplifiers, oscillators and DACs. Also different applications using Op-Amp will be designed.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark										
CO-02			~								~
CO-03					~				√		
CO-04	~		~								√
CO-05		~				~			√		
CO-06		~			~						
CO-07			~			~		✓			

B.ScVI	SIXTH SEMESTER COURSE CODE: GECPHY-04										
PAPER C	ODE:PGEC-4TCredit: (Theory-03, Practical-1),Theory: 45 Hours, Practical: 30										
Hours											
PAPER T	ITLE: Analog Systems and Applications										
THEORY	THEORY MARKS: 100 (SEE: 80 & CCA: 20)										
PRACTIC Ouestion	PRACTICAL MARKS: 50 Question Pattern -i) Objective Type Question-MCQ. Fill up the blanks. True /False Total- 10.0										
	ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q.										
	iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.										
(T-1 Hours	Semiconductor Diodes: P and N type semiconductors. Energy Level Diagram Conductivity and Mobility, Concept of Drift velocity.PN Junction Fabrication (Simple Ide Barrier Formation in PN Junction Diode. Derivation for Barrier Potential, Barrier										
UNI 10 F	Width and Current for abrupt Junction. Equation of continuity, Current Flow Mechanism in Forward and Reverse Biased Diode.										
UNIT-2 10 Hours	Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers. Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter, (2) Zener Diode and Voltage Regulation. Principle, structure and characteristics of (1) LED, (2) Photodiode and (3) Solar Cell, Qualitative idea of Schottky diode and Tunnel diode.										
UNIT-3 10 Hours	Bipolar Junction transistors: n-p-n and p-n-p Transistors. I-V characteristics of CB and CE Configurations. Active, Cutoff and Saturation Regions. Current gains α and β . Relations between α and β . Load Line analysis of Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow.										
UNIT-4 10 Hours	 Feedback in Amplifiers: Positive and Negative Feedback. Effect of negative feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise. Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phase shift oscillator, determination of Frequency. Hartley & Colpitts oscillators 										
SUGGESTED READINGS	 Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc- Graw Hill. Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall. Linear Integrated Circuit, R. A. Gayakwad, 4th edition, 2000, Prentice Hall Microelectronic circuits, A.S. Sedra, K.C. Smith, A.N. Chandorkar, 2014, 6th Edn., Oxford University Press. Semiconductor Devices: Physics and Technology, S.M. Sze, 2nd Ed., 2002, Wiley India Electronic Principles, A. Malvino, D.J. Bates, 7th Edition, 2018, Tata Mc-Graw Hill Education Electronic Devices & circuit Theory, R.L. Boylestad & L.D. Nashelsky, 2009, Pearson 										

t) n	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion
redi	
ract 2 Cı	
[0]	

B.ScVI	SIXTH SEMESTER COURSE CODE: GECPHY-4LAB										
PAPER C	ODE: PGEC-4P Credit: Practical-1, Practical: 30 Hours										
PAPER T	PAPER TITLE: DSEC-LAB: AnalogSystems and Applications										
PRACTICAL MARKS: 50											
Topics (Course contents) A tentative list lab work that can be amended by teacher /department concerned.											
	At least 08 experiments from the following:										
	17. To study the V-I characteristics of a Zener diode and its use as voltage regulator.										
	18. Study of V-I & power curves of solar cells and find maximum power point & efficiency.										
	19. To study the characteristics of a Bipolar Junction Transistor in CE configuration.										
	20. To study the various biasing configurations of BJT for normal class A operation.										
	21. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.										
	22. To study the frequency response of voltage gain of a two stage RC-coupled transistor amplifier.										
	23. To design a Wien bridge oscillator for given frequency using an op-amp.										
rs	24. To design a phase shift oscillator of given specifications using BJT.										
Hou	25. To design a digital to analog converter (DAC) of given specifications.										
30]	26. To design an inverting amplifier using Op-amp (741,351) for dc voltage of given gain										
	27. (a) To design inverting amplifier using Op-amp (741,351) & study its frequency response										
	(b) To design non-inverting amplifier using Op-amp (741,351) and study frequency response										
	28. (a) To add two dc voltages using Op-amp in inverting and non-inverting mode										
	(b) To study the zero-crossing detector and comparator.										
	29. To design a precision Differential amplifier of given I/O specification using Op-amp.										
	30. To investigate the use of an op-amp as an Integrator.										
	31. To investigate the use of an op-amp as a Differentiator.										
	32. To design a circuit to simulate the solution of simultaneous equation and 1st/2ndorder										
	differential equation.										
	· · · · · · · · · · · · · · · · · · ·										
ses	 Use of following sites 										
ouro	https://www.e-booksdirectory.com/physics.php										
reso	 <u>https://www.pdfdrive.com/category/66</u> <u>https://www.e-booksdirectory.com/listing.php?category=2</u> 										
ine	https://www.openculture.com/free-physics-textbooks										
Onl	 <u>https://bookboon.com/en/physics-ebooks</u> https://www.pdfdrive.com/ 										
	https://zlibrary.to/										

TED S	1.Basic Electronics: A text lab manual, P.B.Zbar, A.P.Malvino, M.A.Miller, 1994, Mc-Graw Hill. OP-Amps.
SUGGEST BOOK	

Discipline Specific Core Course (DSCPHY-07) Semester-VII Paper: Solid State Physics-II <u>Course Learning Outcomes</u>

Course Learning Outcomes

On successful completion of the module students should be able to

CO-01: Elucidate the concept of lattice, crystals and symmetry operations.

CO-02: Understand the elementary lattice dynamics and its influence on the properties of materials.

CO-03: Describe the main features of the physics of electrons in solids: origin of energy bands, and their influence electronic behavior.

CO-04: Explain the origin of dia-, para-, and ferro-magnetic properties of solids.

CO-05: Explain the origin of the dielectric properties exhibited by solids and the concept of polarizability.

CO-06: Understand the basics of phase transitions and the preliminary concept and experiments related to superconductivity in solid.

CO-07: In the laboratory students will carry out experiments based on the theory that they have learned to measure the magnetic susceptibility, dielectric constant, trace hysteresis loop.

They will also employ to four probe methods to measure electrical conductivity and the hall set up to determine the hall coefficient of a semiconductor.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	~			~							
CO-02		~	~								~
CO-03					~				~		
CO-04	~		~								~
CO-05						~			~		
CO-06					~						
CO-07	~		~			~		~			

B.SC.-VII SEVENTH SEMESTER **COURSE CODE: DSCPHY-07** PAPER CODE:PDSCC-7 Credit: (Theory-03, Practical-01), Theory: 45 Hrs, Practical: 30 Hrs PAPER TITLE: Solid State Physics-II **THEORY MARKS:** 100 (SEE: CCA: 20 80 &) PRACTICAL MARKS: 50 Question Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q. Crystal Structure: Lattice Translation Vectors. Lattice with a Basis. Types of 11 Hours Lattices. Unit Cell, Symmetry and Symmetry Elements. Diffraction of X-rays: single **UNIT-1** crystal and powder method. Bragg's Law, Laue Condition. Edward's construction. Atomic and Geometrical Factor. Simple numerical problem on SC, BCC, FCC. Elementary Lattice Dynamics: Lattice Vibrations and Phonons: Linear Monoatomic **12 Hours UNIT-2** and Diatomic Chains. Acoustical and Optical Phonons. Qualitative Description of the Phonon spectrum in Solids. Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids, T^3 law. Electrons in Solids: Electrons in metals- Introduction to Drude Model, Density of L2 Hours states (1- D, 2-D, 3-D) (basic idea), Elementary band theory: Kronig Penney model. **UNIT-3** Band Gap, direct and indirect bandgap. Effective mass, mobility, Hall Effect (Metal and Semiconductor). Dielectric Properties of Materials: Polarization. Local Electric Field in solids. **O Hours UNIT-4** Depolarization Field. Electric Susceptibility. Polarizability. Clausius Mossotti Equation. Classical Theory of Electric Polarizability. AC polarizability, Normal and Anomalous Dispersion. Complex Dielectric Constant. Langevin-Debye equation. Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd. 1. SUGGESTED READINGS Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India. 2. 3. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning. 4. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer. Peer/Micro teaching, Class Seminar, Quiz, Group Discussion 02 Credit) Practicum

B.Sc.-VII SEVENTH SEMESTER **COURSE CODE: DSCPHY-7LAB** Practical: 30 Hours PAPER CODE: PDSCC-7P Credit: Practical-1, PAPER TITLE: DSEC-LAB: SOLID STATE PHYSICS-II PRACTICAL MARKS: 50 **Topics (Course contents)** A tentative list lab work that can be amended by teacher /department concerned. At least 06 experiments from the following: Measurement of susceptibility of paramagnetic solution (Quinck's Tube Method). 1. 2. To measure the Magnetic susceptibility of solids. To determine the Coupling Coefficient of a piezoelectric crystal. 3. 4. To study the dielectric response of materials with frequency. To determine the complex dielectric constant and plasma frequency of a metal using 5. Surface Plasmon Resonance (SPR) technique. **30 Hours** To determine the refractive index of a dielectric material using SPR technique. 6. 7. To study the PE Hysteresis loop of a Ferroelectric Crystal. 8. To draw the BH curve of Iron (Fe) using solenoid & determine the energy loss from Hysteresis loop. 9. To measure the resistivity of a semiconductor (Ge) with temperature (up to 150° C) by four-probe method and determine its band gap. 10. To determine the Hall coefficient of a semiconductor sample. 11. Analysis of X-Ray diffraction data in terms of unit cell parameters and estimation of particle size. 12. Measurement of change in resistance of a semiconductor with magnetic field. e-Resources / e-books and e-learning portals for Physics **Online resources** Use of following sites https://www.e-booksdirectory.com/physics.php \geq https://www.pdfdrive.com/category/66 https://www.e-booksdirectory.com/listing.php?category=2 https://www.openculture.com/free-physics-textbooks https://bookboon.com/en/physics-ebooks https://www.pdfdrive.com/ https://zlibrary.to/

S	1.	Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
BOOK	2.	A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal
LED	3.	Elements of Solid-State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India
EST	4.	Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press
SUGG	5.	Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers.

Discipline Specific Elective Course (DSEPHY-05)

Semester-VII

Paper: ElectromagneticTheory

Course Learning Outcomes

Course Learning Outcomes

At the end of this course the student will be able to:

CO-01: Apply Maxwell's equations to deduce wave equation, electromagnetic field energy, momentum and angular momentum density.

CO-02: Understand electromagnetic wave propagation in unbounded media: Vacuum, dielectric medium, conducting medium, plasma.

CO-03: Understand electromagnetic wave propagation in bounded media: reflection and transmission coefficients at plane interface in bounded media.

CO-04: Understand polarization of Electromagnetic Waves: Linear, Circular and Elliptical Polarization. Production as well as detection of waves in laboratory.

CO-05: Learn the features of planar optical wave guide.

CO-06: Understand the fundamentals of propagation of electromagnetic waves through optical fibres.

CO-07: In the laboratory course, the students get an opportunity to perform experiments with Polarimeter, Babinet Compensator, Ultrasonic grating, simple dipole antenna. Also, to study phenomena of interference, refraction, diffraction and polarization.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark			~							
CO-02			~				~				~
CO-03	~				~				~		
CO-04			~								~
CO-05		~				~			~		
CO-06					~						~
CO-07	~	~	~			~		~			

B.SC.VII	C.VII SEVENTH SEMESTER COURSE CODE: DSEPHY-05								
PAPER C	PER CODE: PDSEC-5 Credit: (Theory-03, Practical-01), Theory: 45 Hrs, Practical: 30 Hrs								
PAPER T	PAPER TITLE: Electromagnetic Theory								
THEORY PRACTIC	THEORY MARKS: 100 (SEE: 80 & CCA : 20) PRACTICAL MARKS: 50								
Question	Question Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.								
UNIT-1 11 Hours	Maxwell Equations: Review of Maxwell's equations. Displacement Current. Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Poynting's Theorem and Poynting's Vector.								
UNIT-2 11 Hours	EM Wave Propagation in Unbounded Media: Plane em waves through vacuum and isotropic dielectric medium: transverse nature, refractive index, dielectric constant, wave impedance. Plane em waves through conducting medium: relaxation time, skin depth, attenuation constant.								
UNIT-3 13 Hours	EM Waves in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane em waves at plane interface between two dielectric media-Laws of Reflection & Refraction. Fresnel's Formulae for perpendicular & parallel polarization, Brewster's law. Reflection & Transmission coefficients. Total internal reflection.								
UNIT-5 13 Hours	Wave Guides: Planar optical wave guides. Planar dielectric wave guide ($-d/2 < x < d/2$). Condition of continuity at interface. Phase shift on total reflection. Eigenvalue equations. Phase and group velocity of guided waves.Optical Fibres: Acceptance Angle, Numerical Aperture. Step and Graded Index fibres (Definitions Only). Single and Multiple Mode Fibres.								
SUGGESTED READINGS	 ntroduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings. Electromagnetic Field and Waves, P. Lorrain and D. Corson, 2nd Ed., 2003, CBS Publisher. Classical Electrodynamics, J.D. Jackson, 3rd Edn., 2010, Wiley Principle of Optics, M. Born and E. Wolf, 6th Edn., 1980, Pergamon Press Optics, (2017), 6th Edition, Ajoy Ghatak, McGraw-Hill Education, New Delhi 								
Practicum (02 Credit)	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion								

DEPARTMENT OF PHYSICS, RAJEEV GANDHI GOVT. P.G. COLLEGE, AMBIKAPUR (CG), INDIA

B.ScVII	[SEVENTH SEMESTER COURSE CODE: DSEPHY-5LAB
PAPER C	ODE:	PDSEC-5P Credit: Practical-1, Practical: 30 Hours
PAPER T	ITLE:	DSEC-LAB: ELECTROMAGNETIC THEORY
PRACTIC	CAL M	ARKS: 50
		Topics (Course contents)
A tentative	e list la	b work that can be amended by teacher /department concerned.
	At	least 06 experiments from the following
	1.	To verify the law of Malus for plane polarized light.
	2.	To determine the specific rotation of sugar solution using Polarimeter.
	3.	To analyze elliptically polarized light by using a Babinet's compensator.
	4.	To study dependence of radiation on angle for a simple Dipole antenna.
	5.	To determine the wavelength and velocity of ultrasonic waves in a liquid (Kerosene Oil, Xylene, etc.) by studying the diffraction through ultrasonic grating.
s	6.	To study the reflection, refraction of microwaves
ours	7.	To study Polarization and double slit interference in microwaves.
30 H	8.	To determine the refractive index of liquid by total internal reflection using Wollaston's air-film.
	9.	To determine the refractive Index of (1) glass and (2) a liquid by total internal reflection using a Gaussian eyepiece.
	10.	To study the polarization of light by reflection and determine the polarizing angle for air-glass interface.
	11.	To verify the Stefan's law of radiation and to determine Stefan's constant.
	12.	To determine Boltzmann constant using V-I characteristics of PN junction diode.
	13.	To find Numerical Aperture of an Optical Fibre.
	14.	To verify Brewster's Law and to find Brewster's angle.
	•	e-Resources / e-books and e-learning portals for Physics
rces		Use of following sites
nos		 <u>https://www.e-booksdirectory.com/physics.php</u> https://www.pdfdrive.com/category/66
e re:		► <u>https://www.e-booksdirectory.com/listing.php?category=2</u>
line		<u>https://www.openculture.com/free-physics-textbooks</u> <u>https://bookboon.com/en/physics.ebooks</u>
0u		 https://www.pdfdrive.com/
		https://zlibrary.to/

OKS	1.	Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House.
BO	2.	Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer
LED	3.	Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Pres.
SUGGES	4.	Engineering Practical Physics, S. Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt. Ltd.

Discipline Specific Elective Course (DSEPHY-06)

Semester-VII

Paper: Nuclear and Particle Physics-I

Course Learning Outcomes

Course Learning Outcomes

At the end of this course the student will be able to:

CO-01: To be able to understand the basic properties of nuclei as well as knowledge of experimental determination of the same, the concept of binding energy, its various dependent parameters, N-Z curves and their significance

CO-02: To appreciate the formulations and contrasts between different nuclear models such as Liquid drop model, Fermi gas model and Shell Model and evidences in support.

CO-03: Knowledge of radioactivity and decay laws. A detailed analysis, comparison and energy kinematics of alpha, beta and gamma decays.

CO-04: Familiarization with different types of nuclear reactions, Q- values, compound and direct reactions.

CO-05: To know about energy losses due to ionizing radiations, energy losses of electrons, gamma ray interactions through matter and neutron interaction with matter. Through the section on accelerators students will acquire knowledge about Accelerator facilities in India along with a comparative study of a range of detectors and accelerators which are building blocks of modern day science.

CO-06: It will acquaint students with the nature and magnitude of different forces, particle interactions, families of sub- atomic particles with the different conservation laws, concept of quark model.

CO-07: The acquired knowledge can be applied in the areas of nuclear medicine, medical physics, archaeology, geology and other interdisciplinary fields of Physics and Chemistry. It will enhance the special skills required for these fields.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark	~		~	~						
CO-02	~										~
CO-03					~				~		
CO-04			~								
CO-05	~	~				~			~		
CO-06	✓				~						~
CO-07	✓	~	~			~		√			

B.SCVI	SEVENTH SEMESTER COURSE CODE: DSEPHY-06								
PAPER C	R CODE: PDSEC-6 Credit: (Theory-03, Practical-01), Theory: 45 Hrs, Practical: 30 Hrs								
PAPER T	APER TITLE: Nuclear and Particle Physics-I								
THEORY	THEORY MARKS: 100 (SEE: 80 & CCA : 20)								
TUTORIA	AL MARKS: 50								
Question	Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q.								
	iii) Short Answer Type- Word Limit 200-250, Total-5 Q.								
	iv) Long Answer Type- Word Limit 500-600, Total-5 Q.								
UNIT-1 10 Hours	significance of its various terms, condition of nuclear stability, nucleon separation energies (up to two nucleons), evidence for nuclear shell structure and the basic assumption of shell model.								
UNIT-2 10 Hours	Radioactivity decay: Decay rate and equilibrium (Secular and Transient)(a) Alpha decay: basics of α -decay processes, theory of α -emission, Gamow factor, Geiger Nuttall law, α - decay spectroscopy, decay Chains. (b) β - decay: energy kinematics for β -decay, β -spectrum, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission from the excited state of the nucleus & kinematics_internal conversion								
UNIT-3 12 Hours	Nuclear Reactions: Types of Reactions, units of related physical quantities, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct reaction, resonance reaction,								
	Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT).								
UNIT-4 13Hours	Particle physics: Particle interactions (concept of different types of forces), basic features, Conservation Laws (energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness) concept of quark model, color quantum number and gluons.								
	1. Nuclear Physics: principles and applications by J Lilley, Wiley Publication, 2006.								
ED GS	2. Radiation detection and measurement, G F Knoll, John Wiley & Sons, 2010.								
SUGGEST READIN	Introduction to elementary particles by D J Griffiths, Wiley, 20083. Basic ideas and concepts in Nuclear Physics: An introductory approach by K Heyde, third edition, IOP Publication, 1999.								
	4. Nuclear Physics by S N Ghoshal, First edition, S. Chand Publication, 2010. Introductory Nuclear Physics by K S Krane, Wiley-India Publication, 2008								

t) n	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion
icur redi	
ract 2 Cı	
P1 [0]	

Discipline Specific Core Course (DSCC-6) Semester-VII Paper: Solid State Physics-I <u>Course Learning Outcomes</u>

Course Learning Outcomes

On successful completion of the module students should be able to

CO-01: Elucidate the concept of lattice, crystals and symmetry operations.

CO-02: Understand the elementary lattice dynamics and its influence on the properties of materials.

CO-03: Describe the main features of the physics of electrons in solids: origin of energy bands, and their influence electronic behavior.

CO-04: Explain the origin of dia-, para-, and ferro-magnetic properties of solids.

CO-05: Explain the origin of the dielectric properties exhibited by solids and the concept of polarizability.

CO-06: Learn the properties of superconductivity in solid.

CO-07: In the laboratory students will carry out experiments based on the theory that they have learned to measure the magnetic susceptibility, dielectric constant, trace hysteresis loop.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	~	~		~	~						~
CO-02											~
CO-03					~		~		~		
CO-04			~								
CO-05		~		~		~				~	
CO-06					~						~
CO-07	~	~	~			~		~			

B.SCVI	SEVENTH SEMESTER COURSE CODE: DSEPHY-07								
PAPER C	APER CODE: PDSEC-7 Credit: (Theory-03, Practical-01), Theory: 45 Hrs, Practical: 30 Hrs								
PAPER T	ITLE: StatisticalMechanics								
THEORY MARKS: 100 (SEE: 80 & CCA: 20) PRACTICAL MARKS: 50									
Question	Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.								
UNIT-1 10 Hours	Classical-Statistics : Macrostates and Microstates, Phase Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur-Tetrode equation. Law of Equipartition of Energy (with proof)								
UNIT-2 15 Hours	Bose-Einstein Statistics : B-E Distribution law, Thermodynamic functions of a strongly degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas. Bose derivation of Planck's law.								
UNIT-3 10 Hours	Fermi-Dirac Statistics: Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly degenerate Fermi Gas, Fermi Energy Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass Limit.								
UNIT-4 10 Hours	Theory of Radiation: Stefan-Boltzmann law and its thermodynamic proof. Wien's Displacement law. Wien's Distribution law. Rayleigh-Jean's Law. Planck's Quantum Postulates. Planck's Law of Blackbody Radiation Deduction of Wien's Distribution Law, Rayleigh-Jean's Law, Stefan-Boltzmann Law and Wien's Displacement law from Planck's law.								
SUGGESTED READINGS	 Statistical Mechanics: R.K. Pathria and P. D. Beale (Academic Press) Introductory Statistical Mechanics: R. Bowley and M. Sanchez (Oxford Univ. Press) Statistical Physics: F. Mandl (Wiley) A treatise on Heat: M.N. Saha and B.N. Srivastava (Indian Press) Problems and Solutions on Thermodynamics andStatistical Mechanics: Lim Yung-Kou (Sarat Book House) 								
Practicum (02 Credit)	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion								

B.Sc.-VII

SEVENTH SEMESTER

COURSE CODE: DSEPHY-7LAB

PAPER CODE: PDSEC-7P Credit: Practical-1, Practical: 30 Hours

PAPER TITLE: DSEC-LAB: STATISTICAL MECHANICS

PRACTICAL MARKS: 50

Topics (Course contents)

A tentative list lab work that can be amended by teacher /department concerned.

Us Sta	e C/C++/Scilab/Python/other numerical simulations for solving the problems based on atistical Mechanics like:
1.	Computational analysis of the behavior of a collection of particles in a box that satisf Newtonian mechanics and interact via the Lennard-Jones potential, varying the tot number of particles N and the initial conditions:
	a) Study of local number density in the equilibrium state (i) average; (ii) fluctuations
	b) Study of transient behavior of the system (approach to equilibrium)
	c) Relationship of large N and the arrow of time
	d) Computation of the velocity distribution of particles for the system and comparison with the Maxwell velocity distribution.
2.	Plot the probability of various macrostates in coin-tossing experiment (two level system versus number of heads with 4, 8, 16 coins etc.
3.	Computation of the partition function Z(b) for the systems with a finite number of sing particle levels (e.g., 2 level, 3 level etc.) and finite number of non-interacting particles under Maxwell-Boltzmann/ Fermi-Dirac/Bose Einstein statistics:
	a) Study the behavior of Z(b), average energy, C _v , and entropy and its dependence upon the temperature, total number of particles N and the spectrum of single particle energy states.
	b) Plot the probability of occupancy of all the states w.r.t. temperature.
4.	Plot the Maxwell speed distribution function at different temperatures in a 3-dimension system. Calculate the average speed, root mean square and most probable speed
5.	Plot Specific Heat of Solids w.r.t temperature
	a) Dulong-Petit law,
	b) Einstein distribution function
	c) Debye distribution function
6.	Plot the following functions with energy at different temperatures
	a) Maxwell-Boltzmann distribution
	b) Fermi-Dirac distribution
	c) Bose-Einstein distribution
7.	Plot the distribution of particles w.r.t. energy (dN/de versus e) in 3 Dimensions for
	a) Relativistic and non-relativistic bosons both at high and low temperature.
	b) Relativistic and non-relativistic fermions both at high and low temperature.
8.	. Plot Planck's law of Blackbody radiation w.r.t. wavelength/frequency at different temperatures. Compare it with Rayleigh-Jean's Law and Wien's distribution law for a giv temperature.

ine resources	 e-Resources / e-books and e-learning portals for Physics Use of following sites https://www.e-booksdirectory.com/physics.php https://www.pdfdrive.com/category/66 https://www.e-booksdirectory.com/listing.php?category=2 https://www.openculture.com/free-physics-textbooks
0n]	 <u>https://bookboon.com/en/physics-ebooks</u> <u>https://www.pdfdrive.com/</u> <u>https://zlibrary.to/</u>
	1. Elementary Numerical Analysis: K.E. Atkinson (Wiley)
KS	2. Introduction to Modern Statistical Mechanics: D. Chandler (Oxford University Press)
B00	3. Thermodynamics, Kinetic Theory and Statistical Thermodynamics: F. W. Sears and G. L. Salinger (Narosa)
LED	4. Modern Thermodynamics with Statistical Mechanics: Carl S. Helrich (Springer)
SUGGES	5. Statistical and Thermal Physics with Computer Applications: H. Gould and J.Tobochnik (Princeton University Press)

Discipline Specific Elective Course (DSEC-4)

Semester-VIII

Paper: Analog Systems and Applications

Course Learning Outcomes

Course Learning Outcomes

At the end of this course, the following concepts will be learnt

CO-01: Characteristics and working of pn junction.

CO-02: Two terminal devices: Rectifier diodes, Zener diode, photodiode etc.

CO-03: NPN and PNP transistors: Characteristics of different configurations, biasing, stabilization and their applications.

CO-04: CE and two stage RC coupled transistor amplifier using h-parameter model of the transistor.

CO-05: Designing of different types of oscillators and their stabilities.

CO-06: Ideal and practical op-amps: Characteristics and applications.

CO-07: In the laboratory course, the students will be able to study characteristics of various diodes and BJT. They will be able to design amplifiers, oscillators and DACs. Also different applications using Op-Amp will be designed.

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark	\checkmark			\checkmark						
CO-02	✓		~								~
CO-03					~		~		~		
CO-04			~					~			
CO-05	✓	\checkmark		\checkmark		~				√	
CO-06					~						~
CO-07		~		\checkmark		~		✓			

B.SCVI	II EIGHTH SEMESTER COURSE CODE:DSCPHY-08										
PAPER C	0DE:PDSCC-8 Credit: (Theory-03, Practical-01), Theory: 45 Hrs, Practical: 30 Hrs										
PAPER TITLE: PHYSICS OF DEVICES AND INSTRUMENTS											
THEORY MARKS: 100 (SEE:80 CCA : 20) PRACTICAL: 50											
Question Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.											
UNIT-1 12 Hours	Devices: Characteristic and small signal equivalent circuits of UJT and JFET. Metal- semiconductor Junction. Metal oxide semiconductor (MOS) device. Ideal MOS and Flat Band voltage. SiO2-Si based MOS. MOSFET– their frequency limits. Enhancement and Depletion Mode MOSFETS, CMOS. Charge coupled devices. Tunnel diode.										
UNIT-2 12 Hours	Introduction to communication systems: Block diagram of electronic communication system, Need for modulation. Amplitude modulation. Modulation Index. Analysis of Amplitude Modulated wave. Sideband frequencies in AM wave. CE Amplitude Modulator. Demodulation of AM wave using Diode Detector. basic idea of Frequency, Phase.										
UNIT-3 12 Hours	Active and Passive Filters, Low Pass, High Pass, Band Pass and band Reject Filters. Multivibrators: Astable and Monostable Multivibrators using transistors.										
UNIT-4 12 Hours	Phase Locked Loop(PLL): Basic Principles, Phase detector(XOR & edge triggered), Voltage Controlled Oscillator (Basics, varactor). Loop Filter– Function, Loop Filter Circuits, transient response, lock and capture.										
	 Physics of Semiconductor Devices, S.M. Sze & K.K. Ng, 3rd Ed.2008, John Wiley & Sons 										
DINGS	• Electronic devices and integrated circuits, A.K. Singh, 2011, PHI Learning Pvt. Ltd.										
	• Op-Amps & Linear Integrated Circuits, R.A.Gayakwad, 4 Ed. 2000, PHI Learning Pvt. Ltd										
	• Electronic Devices and Circuits, A. Mottershead, 1998, PHI Learning Pvt. Ltd.										
REA	• Electronic Communication systems, G. Kennedy, 1999, Tata McGraw Hill.										
ED	• Introduction to Measurements & Instrumentation, A.K. Ghosh, 3 rd										
EST	Ed., 2009, PHI Learning Pvt. Ltd.										
sugg	• Semiconductor Physics and Devices, D.A. Neamen, 2011, 4 th Edition, McGraw Hill										
	 PC based instrumentation; Concepts & Practice, N.Mathivanan, 2007, Prentice-Hall of India 										

DEPARTMENT OF PHYSICS, RAJEEV GANDHI GOVT. P.G. COLLEGE, AMBIKAPUR (CG), INDIA

t) n	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion
icu redi	
ract 2 Cı	
Ъ.	

B.Sc.-VIII

EIGHTH SEMESTER

COURSE CODE: DSCPHY-8LAB

PAPER CODE: PDSCC-8P

Credit: Practical-1, Practical: 30 Hours

PAPER TITLE: DSCC-LAB: PHYSICS OF DEVICES AND INSTRUMENTS

PRACTICAL MARKS: 50

Topics (Course contents) A tentative list lab work that can be amended by teacher /department concerned.

Experiments from both Section A and Section B:

Section-A

- To design a power supply using bridge rectifier and study effect of C-filter.
- To design the active Low pass and High pass filters of given specification.
- To design the active filter (wide band pass and band reject) of given specification.
- To study the output and transfer characteristics of a JFET.
- To design a common source JFET Amplifier and study its frequency response.
- To study the output characteristics of a MOSFE
- To study the characteristics of a UJT and design a simple Relaxation Oscillator.
- To design an Amplitude Modulator using Transistor.
- To design PWM, PPM, PAM and Pulse code modulation using ICs.
- To design an Astable multivibrator of given specifications using transistor.
- To study a PLL IC (Lock and capture range).
- To study envelope detector for demodulation of AM signal.
- Study of ASK and FSK modulator.
- Glow an LED via USB port of PC.
- Sense the input voltage at a pin of USB port and subsequently glow the LED connected with another pin of USB port.

Section-B:

SPICE/MULTISIM simulations for electrical networks and electronic circuits

- 1. To verify the Thevenin and Norton Theorems.
- 2. Design and analyze the series and parallel LCR circuits
- 3. Design the inverting and non-inverting amplifier using an Op-Amp of given gain
- 4. Design and Verification of op-amp as integrator and differentiator
- 5. Design the 1st order active low pass and high pass filters of given cutoff frequency
- 6. Design a Wein's Bridge oscillator of given frequency.
- 7. Design clocked SR and JK Flip-Flop's using NAND Gates
- 8. Design 4-bit asynchronous counter using Flip-Flop ICs
- 9. Design the CE amplifier of a given gain and its frequency response.
- 10. Design an Astable multivibrator using IC555 of given duty cycle.
| Online resources | e-Resources / e-books and e-learning portals for Physics Use of following sites https://www.e-booksdirectory.com/physics.php https://www.pdfdrive.com/category/66 https://www.e-booksdirectory.com/listing.php?category=2 https://www.openculture.com/free-physics-textbooks https://bookboon.com/en/physics-ebooks https://www.pdfdrive.com/ |
|------------------|---|
| SUGGESTED BOOKS | Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino,
M.A.Miller,1994, Mc-Graw Hill Integrated Electronics, J. Millman and C.C. Halkias, 1991, Tata Mc-Graw Hill. Electronics: Fundamentals and Applications, J.D. Ryder, 2004, Prentice Hall. OP-Amps and Linear Integrated Circuit, R. A. Gayakwad, 4th edn., 2000, Prentice Hall. Introduction to PSPICE using ORCAD for circuits & Electronics, M.H.
Rashid, 2003, PHI Learning. PC based instrumentation; Concepts & Practice, N.Mathivanan, 2007, Prentice-Hall of India |

Discipline Specific Elective Course (DSEPHY-08) Semester-VIII

Paper: NUCLEAR & PARTICLE PHYSICS-II

Course Learning Outcomes

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Learn the ground state properties of a nucleus – the constituents and their properties, mass number and atomic number, relation between the mass number and the radius and the mass number, average density, range of force, saturation property, stability curve, the concepts of packing fraction and binding energy, binding energy per nucleon vs. mass number graph, explanation of fusion and fission from the nature of the binding energy graph. **CO-02:** Know about the nuclear models and their roles in explaining the ground state properties of the nucleus –(i) the liquid drop model, its justification so far as the nuclear properties are concerned, the semi-empirical mass formula, (ii) the shell model, evidence of shell structure, magic numbers, predictions of ground state spin and parity, theoretical deduction of the shell structure, consistency of the shell structure with the Pauli exclusion principles.

CO-03: Learn about the process of radioactivity, the radioactive decay law, the emission of alpha, beta and gamma rays, the properties of the constituents of these rays and the mechanisms of the emissions of these rays, outlines of Gamow's theory of alpha decay and Pauli's theory of beta decay with the neutrino hypothesis, the electron capture, the fine structure of alpha particle spectrum, the Geiger-Nuttall law, the radioactive series.

CO-04: Learn the basic aspects of nuclear reactions, the Q-value of such reaction and its derivation from conservation laws, The reaction cross-sections, the types of nuclear reactions, direct and compound nuclear reactions, Rutherford scattering by Coulomb potential.

CO-05: Learn some basic aspects of interaction of nuclear radiation with matter- interaction of gamma ray by photoelectric effect, Compton scattering

and pair production, energy loss due to ionization, Cerenkov radiation.

CO-06: Learn about the detectors of nuclear radiations- the Geiger-Mueller counter, the scintillation counter, the photo-multiplier tube, the solid state and semiconductor detectors.

CO-07: The students are expected to learn about the principles and basic constructions of particle accelerators such as the Van-de-Graff generator, cyclotron, betatron and synchrotron. They should know about the accelerator facilities in India.

CO-08: Gain knowledge on the basic aspects of particle Physics – the fundamental interactions, elementary and composite particles, the classifications of particles: leptons, hadrons (baryons and mesons), quarks, gauge bosons. The students should know about the quantum numbers of particles: energy, linear momentum, angular momentum, isospin, electric charge, colour charge, strangeness, lepton numbers, baryon number and the conservation laws associated with them.

MAPPING OF CO (COURSE OUTCOME) AND PO (PROGRAMME OUTCOME):
--------------------------------------	-------------------------------

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	✓	~			~						
CO-02			~				~				
CO-03					~		~		~		
CO-04			~					~			✓
CO-05	~	\checkmark		~		~				✓	
CO-06					~						~
CO-07	~						~		~		
CO-08		~		~		~		~			

B.SCVI	II EIGHTH SEMESTER COURSE CODE: DSEPHY-08							
PAPER C	ODE:PDEC-8 Credit: (Theory-03, Practical-01), Theory: 45 Hrs, Practical: 30 Hrs							
PAPER T	PAPER TITLE: Nuclear and Particle Physics-II							
THEORY	THEORY MARKS: 100 (SEE-80 & CCA-20)							
Question	PKACTICAL: 50 Question Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.							
UNIT-1 10 Hours	General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.							
UNIT-2 10 Hours	Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction, Coulomb scattering (Rutherford scattering).							
UNIT-3 15 Hours	Particle physics: Particle interactions; basic features, types of particles and its families.Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quarkmodel, color quantum number and gluons.							
UNIT-4 10 Hours	Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.							

SUGGESTED READINGS	 Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008). Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998). Introduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia, 2004). Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press Introduction to Elementary Particles, D. Griffith, John Wiley & Sons Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi Basic ideas and concepts in Nuclear Physics - An Introductory Approach by K. Heyde (IOP- Institute of Physics Publishing, 2004). Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000). Physics and Engineering of Radiation Detection, Syed Naeem Abmed (Academia Brass, Elsevier, 2007).
	 Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic Press, Elsevier, 2007).
	• Theoretical Nuclear Physics, J.M. Blatt & V.F.Weisskopf (Dover Pub.Inc., 1991)
Practicum (02 Credit)	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion

Discipline Specific Elective Course (DSEPHY-09)

Semester-VIII

Paper: Electronics

Course Learning Outcomes

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Understand the design and functional performance of electronic circuits using various semiconductor devices.

CO-02: understand the functional properties and characteristics of semiconductor devices in analog & digital circuits using analog and digital signals.

MAPPING OF CO (COURSE OUTCOME) AND PO (PROGRAMME OUTCOME):

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	~	\checkmark			\checkmark				\checkmark		
CO-02			~				~				~

B.SCVI	II EIGHTH SEMESTER COURSE CODE: DSEPHY-09									
PAPER C	ODE:PDSEC-9 Credit: (Theory-03, Practical-01), Theory: 45 Hrs, Practical: 30 Hrs									
PAPER T	PAPER TITLE: Electronics									
THEORY MARKS: 100 (SEE-80 & CCA-20)										
PRACTIC	PRACTICAL: 50 Overtier Pattern i) Objective Type Overtier MCO Filler the blacks To (Tab. Tab. 1.10.0									
Question	ii) Very Short Answer Type- Word Limit 200-250 Total-5 Q.									
	iv) Long Answer Type- Word Limit 500-600, Total-5 Q.									
	Circuit Analysis:									
-1 urs	Admittance, impedance, scattering and hybrid matrices for two and three-port networks and their cascade and parallel combinations. Review of Laplace Transforms.									
NIT Ho	Response functions, location of poles and zeros of response functions of active and									
10 10	passive systems (Nodal and Modified Nodal Analysis).									
	Physics of Semiconductor Devices:									
6	p-n junction, BJT, JFET, equivalent circuits and high frequency effects, UJT, 4 layer									
T-2 ours	pnpn device (SCR). MOS diode, accumulation, depletion and inversion, MOSFET: I- V C-V characteristics Enhancement and depletion mode MOSEET Metal-									
INU 0 H	semiconductor junctions; Ohmic and rectifying contacts, Schottky diode, I-V, C-V									
1	relations.									
	Digital Circuit: Introduction to digital IC parameters (switching time, propagation									
-3 urs	delay, fan out, fan in etc.). TTL, MOS and CMOS gates, Emitter-coupled logic,									
NIT Ho	MOSFET as transmission gate. A/D and D/A converters. Basics of micro-processor and micro-controller.									
U 15										
6	Communication System: Amplitude, Angle and Pulse-analog modulation:									
r-4 our:	Generation and detection. Model of communication system, classification of signals, representation of signals									
INU 0 H	representation of orginals									
S	1. Network Analysis and Synthesis by F.F. Kuo									
ING	2. Network Analysis with Applications by W.D. Stanley									
[AD	 Electronic Devices and Circuits by J. Millman and C.C. Halkias Semiconductor Devices: Physics and technology by S M Szee 									
) RI	5. Communication Systems by Simon Haykins									
TE	6. Digital Signal Processing by J. G. Proakis and D. G. Manolakis									
GES	 8. Digital Design by M. Mano 									
SUG	9. Digital principles and Applications by A.P. Malvino and D.P.Leac									

t) n	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion
icur edi	
ract 2 Cı	
P1 (0	

B.Sc.-VIII

EIGHTH SEMESTER

COURSE CODE: DSEPHY-9LAB

PAPER CODE: PDSEC-9P Credit: Practical-1, Practical: 30 Hours

PAPER TITLE: DSEC-LAB: ELECTRONICS

PRACTICAL MARKS: 50

Topics (Course contents)

A tentative list lab work that can be amended by teacher /department concerned.

 1 To design and study of a Regulated Power Supply using diodes. 2. To design CLAMPERS and CLIPPERS using semiconductor diodes. 3. To study the merits and demerits of different biasing techniques. 4. To study the characteristics and applications of Silicon Controlled Rectifier: (i) To plot the SCR characteristics under different gate current conditions and to obtain the values of the following parameters, (a) Forward break over voltage (Vasr) for specified gate current, (b) Forward V(V?) (ii). To measure holding current (<i>In</i>) (iii). To measure holding current (<i>In</i>) (iii). To study the effect of varying dc gate current on the firing point of the SCR connected as an <i>ac</i> rectifier. 6. Push-Pull Amplifier, (). To study the uppt waveforms of push-pull amplifier in different classes of operation and to measure the efficiencies in each case, and (i). To study the uppt vaveform for at least two modulating signal frequencies and different indices of modulation. (i). To sketch the modulated waveform for at least two modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the encryb band gap in p-injunction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p c. To blot the transfer characteristics of the CS configuration. c. To blot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics of the CS configuration. f. To determine characteristics of the CS configuration. f. To plot the transfer characteristics of the CS configuration. f. To determine theracteristics of the CS configuration. f. To plot the output characteristics of the CS configuration. f. To plot the transfer characteristics of the CS configuration. f. To plot the output characteristic		At least 06 experiments from the following:									
 2 To design CLAMPERS and CLIPPERS using semiconductor diodes. 3. To study the merits and demerits of different biasing techniques. 4. To study the traquency response of (i) low pass filter, (ii) badpass filter and highpass filter 5. To study the characteristics and applications of Silicon Controlled Rectifier: (i). To plot the SCR characteristics under different gate current conditions and to obtain the values of the following parameters, (a) Forward break over voltage (V sarv) for specified gate current, (b) Forward ON voltage (Vr) (ii). To measure holding current (<i>In</i>) (iii). To study the effect of varying dc gate current on the firing point of the SCR connected as an <i>ac</i> rectifier. 6. Push-Puil Amplifer, (). To study the output waveforms of push-pull amplifier in different classes of operation and to measure the efficiencies in each case, and (i). To study the modulated waveform for at least two modulating signal frequencies and different indices of modulation. (ii). To sketch the demodulated signal for a particular modulating signal frequencies and different indices of modulation. (ii). To sketch the demodulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSPET characterization and application as an amplifier. a. To measure V₀ b. To plot the couput characteristics and hence to obtain trans-conductance (g_e) g. To plot the forquency response of the CS ECT figuration. (i). To plot the transfer characteristics of UT and to obtain the value of Rn (ii). To plot the imput characteristics of UT and to obtain the value of Rn (iii). To plot the many therateristics of UT and to obtain the value of Rn (ii). To plot the imput characteristics of UT and		1. To design and study of a Regulated Power Supply using diodes.									
 3 To study the merits and demetrits of different biasing techniques. 4. To study the frequency response of (i) low pass filter, (ii) bandpass filter and highpass filter 5. To study the characteristics and applications of Silicon Controlled Rectifier: (i). To plot the SCR characteristics under different gate current conditions and to obtain the values of the following parameters, (a) Forward break over voltage (Vsw) for specified gate current, (b) Forward ON voltage (Vr) (ii). To measure holding current (<i>tn</i>) (iii). To study the effect of varying de gate current on the firing point of the SCR connected as an <i>ac</i> rectifier. 6. Push-Pull Amplifier, (i). To study the offect of varying de gate current on the large point of the SCR connected as an <i>ac</i> rectifier. 7. To design Modulation and Demodulation circuits and (i). To study the modulated waveform for at least two modulating signal frequency response of the amplifier operated at the class <i>AB</i>. 7. To design Modulation and Demodulation circuits and (i). To sketch the demodulated signal for a particular modulating signal frequencies and different indices of modulation. (ii). To sketch the demodulated signal for a particular modulating signal modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-in junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the transfer characteristics of the CS configuration. c. To blot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics of tUT and to obtain the values of [], <i>b</i>, Vv, Iv, Ve(w) (ii). To plot the output characteristics of UT and to obtain the values of [], <i>b</i>, Vv, Iv, Ve(w) (ii). To plot the input characteristics of UT and to obtain the value formation. g. To plot th		2. To design CLAMPERS and CLIPPERS using semiconductor diodes.									
 9000 90000 900000 900000 900000 900000 900000 9000000 90000000 900000000000 9000000000000000000000000000000000000		3. To study the merits and demerits of different biasing techniques.									
 5. To study the characteristics and applications of Silicon Controlled Rectifier: (i). To plot the SCR characteristics under different gate current conditions and to obtain the values of the following parameters: (a) Forward break over voltage (VBRP) for specified gate current, (b) Forward ON voltage (Vr) (ii). To measure holding current (<i>In</i>) (iii). To study the effect of varying de gate current on the firing point of the SCR connected as an <i>ac</i> rectifier. 6. Push-Pull Amplifier, (i). To study the output waveforms of push-pull amplifier in different classes of operation and to measure the efficiencies in each case, and (ii). To plot the frequency response of the amplifier operated at the class <i>AB</i>. 7. To design Modulation and Demodulation circuits and (i). To sketch the modulated waveform for at least two modulating signal frequencies and different indices of modulation. (ii). To sketch the emodulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_P. b. To plot the output characteristics of the CS configuration. c. To plot the transfer characteristics and hence to obtain trans-conductance (<i>g</i>) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UT and to obtain the value of Res (iii). To blot the moutput characteristics of UT and to obtain the value of Res (iii). To blot the output characteristics of UT and to obtain the value of Res (iii). To blot the moutput characteristics of UT and to obtain the value of Res (iii). To blot the input characteristics of UT and to obtain		4. To study the frequency response of (i) low pass filter, (ii) bandpass filter and highpass filter									
 (i). To plot the SCR characteristics under different gate current conditions and to obtain the values of the following parameters, (a) Forward break over voltage (Vner) for specified gate current, (b) Forward ON voltage (Vr) (ii). To measure holding current (<i>In</i>) (iii). To study the effect of varying de gate current on the firing point of the SCR connected as an <i>ac</i> rectifier. 6. Push-Pull Amplifier, (i). To study the output waveforms of push-pull amplifier in different classes of operation and to measure the efficiencies in each case, and (ii). To plot the frequency response of the amplifier operated at the class <i>AB</i>. 7. To design Modulation and Demodulation circuits and (i). To sketch the modulated waveform for at least two modulating signal frequencies and different indices of modulation. (ii). To sketch the demodulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the transfer characteristics of the CS configuration. c. To plot the transfer characteristics and hence to obtain trans-conductance (<i>g</i>_m) g. To plot the output characteristics of the CS IPET amplifier with and without feedback. 10. Experiment on Uni-function Transistor and its application. (i). To plot the output characteristics of UT and to obtain the value of Res (iii). To study the working of a UT and to obtain the value of Res (iii). To study the analog to digital converter (<i>DAC</i>) of given specifications. 13. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design a circui		5. To study the characteristics and applications of Silicon Controlled Rectifier:									
 values of the following parameters. (a) Forward break over voltage (V₈₈₇) for specified gate current, (b) Forward ON voltage (V₇) (ii). To study the effect of varying dc gate current on the firing point of the SCR connected as an <i>ac</i> rectifier. 6. Push-Pull Amplifier, (i). To study the output waveforms of push-pull amplifier in different classes of operation and to measure the efficiencies in each case, and (i). To study the output waveforms of the amplifier operated at the class <i>AB</i>. 7. To design Modulation and Demodulation circuits and (i). To sketch the modulated waveform for at least two modulating signal frequencies and different indices of modulation. (ii). To sketch the demodulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To destermine the energy band gap in p-in junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the frequency response of the CS configuration. c. To plot the transfer characteristics of the CS configuration. f. To plot the frequency response of the CS PET amplifier with and without feedback. 10. Experiment on Uni-Junction Transistor and its application. i. To plot the frequency response of the CS PET amplifier with and without feedback. 10. Experiment on Uni-function Transistors of UT and to obtain the values of Rus (ii). To study the output characteristics of UT and to obtain the value of Rus (iii). To blot the frequency response of the CDC of given specifications. 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. T		(i). To plot the SCR characteristics under different gate current conditions and to obtain the									
 current, (b) Forward ON voltage (Vr) (ii). To measure holding current (In) (iii) To study the effect of varying de gate current on the firing point of the SCR connected as an ac rectifier. Push-Pull Amplifier, (i). To study the output waveforms of push-pull amplifier in different classes of operation and to measure the efficiencies in each case, and (i). To plot the frequency response of the amplifier operated at the class AB. To design Modulation and Demodulation circuits and (i). To sketch the modulated waveform for at least two modulating signal frequencies and different indices of modulation. (ii). To sketch the modulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the output characteristics of the CS configuration. c. To plot the transfer characteristics and hence to obtain trans-conductance d. To plot the output characteristics of the CS configuration. f. To plot the frequency response of the CS FET amplifier with and without feedback. 10 Experiment on Uni-Junction Transistor and its application. g. To plot the input characteristics of UT and to obtain the values of <i>C_B</i>, <i>P</i>, Vv, Iv, Veano (ii). To study the working of a UT saw tooth generator 11.To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12.To design and put ofigital converter (ADC) of given specifications. 13.To destign analog to digital converter (ADC) of given specifications. 13.To design analog to digital converter (ADC) of given specifications. 13.To design nalog to digital co		values of the following parameters, (a) Forward break over voltage (VBRF) for specified gate									
 (ii). To measure holding current (<i>h</i>) (iii). To study the effect of varying dc gate current on the firing point of the SCR connected as an <i>ac</i> rectifier. Push-Pull Amplifier, (i). To study the output waveforms of push-pull amplifier in different classes of operation and to measure the efficiencies in each case, and (i). To plot the frequency response of the amplifier operated at the class <i>AB</i>. 7. To design Modulation and Demodulation circuits and (i). To sketch the modulated waveform for at least two modulating signal frequencies and different indices of modulation. (ii). To sketch the demodulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the output characteristics of the CS configuration. c. To plot the output characteristics of the CS configuration. f. To plot the output characteristics and hence to obtain trans-conductance (<i>g</i>_m) g. To plot the output characteristics of UT and to obtain the values of □, <i>h</i>, <i>V</i>, <i>J</i>, <i>V</i> etent (i). To plot the output characteristics of UT and to obtain the value of Ras (iii). To plot the output characteristics of UT and to obtain the value of Ras (iii). To blot the output characteristics of UT and to obtain the value of result. 12. To design analog to digital converter (ACC) using ladder network. 14. Electronic voltmeter (i). To plot the output characteristics of UT and to obtain the value of Ras (iii). To study the working of a UT saw tooth generator 13. To design analog to digital converter (ACC) using ladder network. 14. Electronic voltmeter (i). To plot the frequency response of the coffigurations. 13.		current, (b) Forward ON voltage (V_F)									
 (iii). To study the effect of varying dc gate current on the firing point of the SCR connected as an <i>ac</i> rectifier. 6. Push-Pull Amplifier, (i). To study the output waveforms of push-pull amplifier in different classes of operation and to measure the efficiencies in each case, and (i). To plot the frequency response of the amplifier operated at the class <i>AB</i>. 7. To design Modulation and Demodulation circuits and (i). To sketch the modulated waveform for at least two modulating signal frequencies and different indices of modulation and particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the output characteristics of the CS configuration. c. To plot the transfer characteristics and hence to obtain trans-conductance (g_m) g. To plot the arcteristics and hence to obtain trans conductance (g_m) g. To plot the input characteristics of UT and to obtain the values of □, <i>I</i>, <i>V</i>, <i>v</i>		(ii). To measure holding current (<i>I</i> _{<i>H</i>})									
 an <i>ac</i> rectifier. Push-Pull Amplifier, To study the output waveforms of push-pull amplifier in different classes of operation and to measure the efficiencies in each case, and To design Modulation and Demodulation circuits and To design Modulation and Demodulation circuits and To design Modulation and Demodulation of rat least two modulating signal frequencies and different indices of modulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. To determine the energy band gap in p-1 junction diode. Experiment on FET and MOSFET characterization and application as an amplifier. To plot the couput characteristics of the CS configuration. To plot the transfer characteristics of the CS configuration. To plot the transfer characteristics and hence to obtain trans-conductance (g-n) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. To plot the input characteristics of UJT and to obtain the values of [-, lr, Vv, Jv, Ve(set)) To plot the input characteristics of UJT and to obtain the value of Res To design analog to digital converter (DAC) using ladder network. 12.To design analog to digital converter (DAC) of given specifications. To design digital to analog converter (DAC) using ladder network. 14.Electronic voltmeter To plot the frequency respone of the same. 16. To estimate the generating error for, the ordinary voltmeter and electronic voltmeter and to determine the internal resistances, To plot the frequency respone of the same. 		(iii). To study the effect of varying dc gate current on the firing point of the SCR connected as									
 6. Push-Pull Amplifier, To study the output waveforms of push-pull amplifier in different classes of operation and to measure the efficiencies in each case, and To design Modulation and Demodulation circuits and To design Modulation and Demodulation circuits and To design Modulation and Demodulation circuits and To sketch the modulated signal for a particular modulating signal frequencies and different indices of modulation. To sketch the demodulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure Vp. b. To plot the output characteristics of the CS configuration. c. To plot the transfer characteristics and hence to obtain trans-conductance d. To plot the frequency response of the CS FET amplifier with and without feedback. 10. Experiment on Uni-Junction Transistor and its application. i. To plot the input characteristics of UJT and to obtain the value of Rus (ii). To plot the output characteristics of UJT and to obtain the value of Rus (iii). To study the working of a UJT saw tooth generator 11. To design analog to digital converter (DAC) of given specifications. 13. To design analog to digital converter (DAC) of given specifications. 13. To design analog to digital converter (DAC) using ladder network. 14.Electronic voltmeter (i). To plot the entry encentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the Same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. i. To design a mult		an <i>ac</i> rectifier.									
 (i). To study the output waveforms of push-pull amplifier in different classes of operation and to measure the efficiencies in each case, and (ii). To plot the frequency response of the amplifier operated at the class <i>AB</i>. 7. To design Modulation and Demodulation circuits and (i). To sketch the modulated waveform for at least two modulating signal frequencies and different indices of modulation. (ii). To sketch the demodulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the output characteristics of the CS configuration. c. To plot the output characteristics of the CS configuration. f. To plot the transfer characteristics and hence to obtain trans-conductance (g_m) g. To plot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics of ME CS PET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UIT and to obtain the values of □, <i>I</i>_n, Vv, I_v, V_{etent} (ii). To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12.To design analog to digital converter (DAC) of given specifications. 13.To design analog to digital converter (DAC) of given specifications. 13.To design analog to digital converter (DAC) of given specifications. 13.To design analog to digital converter (DAC) of given specifications. 13.To design analog to digital converter (DAC) of given specifications. 13.To design analog to digital converter (DAC) using ladder network. 14.Elect		6. Push-Pull Amplifier,									
 to measure the efficiencies in each case, and (ii). To plot the frequency response of the amplifier operated at the class AB. 7. To design Modulation and Demodulation circuits and (i). To sketch the modulated waveform for at least two modulating signal frequencies and different indices of modulation. (ii). To sketch the demodulated signal for a particular modulating signal and modulation index for three values of the RC time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the output characteristics of the CS configuration. c. To plot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics of the CS configuration. g. To plot the transfer characteristics of the CS fer amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the output characteristics of UJT and to obtain the values of []. <i>I</i>e, Vv, Iv, Vc(sat) (ii). To plot the output characteristics of UJT and to obtain the value of RBB (iii). To but the working of a UJT saw tooth generator 11. To design a along to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14.Electronic voltmeter (i). To plot the frequency response of the same. 16. To betarmine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of		(i). To study the output waveforms of push-pull amplifier in different classes of operation and									
 (ii). To plot the frequency response of the amplifier operated at the class <i>AB</i>. 7. To design Modulation and Demodulation circuits and (i). To sketch the modulated waveform for at least two modulating signal frequencies and different indices of modulation. (ii). To sketch the demodulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the output characteristics of the CS configuration. c. To measure V_p. e. To plot the output characteristics of the CS configuration. f. To plot the transfer characteristics and hence to obtain trans-conductance d. To measure V_p. e. To plot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics of UIT and to obtain the values of □, <i>I</i>e, Vv, Jv, Vs(set) (ii). To plot the input characteristics of UIT and to obtain the value of □, <i>I</i>e, Vv, Jv, Vs(set) (iii). To blot the uotput characteristics of UIT and to obtain the value of Ras (iii). To design a along converter (ADC) of given specifications. 13. To design analog to digital converter (ADC) of given specifications. 13. To design analog to digital converter (ADC) of given specifications. 14. To determine the internal resistances, (ii). To plot the frequency response of the same. 16. To determine the properties of the MOS amplifier configurations, and to investigate their small signal performance. iii). To plot the frequency response of the same.		to measure the efficiencies in each case, and									
 (b) For the the production and Demodulation circuits and filterent indices of modulation and the modulation for at least two modulating signal frequencies and different indices of modulation. (i). To sketch the modulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure Vp. b. To plot the output characteristics of the CS configuration. c. To plot the transfer characteristics and hence to obtain trans-conductance d. To measure Vp. e. To plot the transfer characteristics and hence to obtain trans conductance (gm) g. To plot the frequency response of the CS configuration. f. To plot the transfer characteristics and hence to obtain trans conductance (gm) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UJT and to obtain the values of □, <i>I</i>, <i>V</i>, <i>V</i>, <i>V</i>, <i>V</i>(sm) (ii). To bit the output characteristics of UJT and to obtain the value of RbB (iii). To study the working of a UJT saw tooth generator 11.To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12.To design digital to analog converter (DAC) using ladder network. 14.Electronic voltmeter (i). To plot the frequency response of the same. 16.To plot the frequency response of the same. 16.To parameter and electronic voltmeter and to determine their internal resistances, (ii). To plot the properties of the MOS amplifier configurations, and to investiga		(ii) To plot the frequency response of the amplifier operated at the class AB									
 (i). To sketch the modulated waveform for at least two modulating signal frequencies and different indices of modulation. (ii). To sketch the demodulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure Vp. b. To plot the output characteristics of the CS configuration. c. To plot the output characteristics and hence to obtain trans-conductance d. To plot the output characteristics and hence to obtain trans conductance (gm) g. To plot the output characteristics of the CS refragmation. f. To plot the transfer characteristics of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UJT and to obtain the values of □. <i>IP</i>, Vv, Iv, Ve(sm) (ii). To plot the output characteristics of UJT and to obtain the values of RBB (iii). To study the working of a UJT saw tooth generator 11.To design a analog to digital converter (ADC) of given specifications. 13.To design digital to analog converter (DAC) of given specifications. 13.To design digital to analog converter (DAC) of given specifications. 13.To plot the frequency response of the same. 16.To optot the greenenge error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (i). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. viol to design a multi-stage CMOS amplifier of a given specifications.		7 To design Modulation and Demodulation circuits and									
 (i). To sketch the demodulation in the feature two insolutating signal inequencies and different indices of modulation. (ii). To sketch the demodulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure Vp. b. To plot the output characteristics of the CS configuration. c. To plot the transfer characteristics and hence to obtain trans-conductance d. To measure Vp. e. To plot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics and hence to obtain trans conductance (<i>gm</i>) g. To plot the transfer characteristics of the CS FET amplifier with and without feedback. 10. Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UIT and to obtain the values of □, <i>I</i>r, Vv, Iv, V₂(set) (ii). To plot the output characteristics of UIT and to obtain the value of R_{BB} (iii). To study the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier onfigurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications.		(i) To sketch the modulated waveform for at least two modulating signal frequencies and									
 (ii). To sketch the demodulated signal for a particular modulating signal and modulation index for three values of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure Vp. b. To plot the output characteristics of the CS configuration. c. To plot the output characteristics and hence to obtain trans-conductance d. To measure Vp. e. To plot the output characteristics of the CS configuration. f. To plot the output characteristics of the CS configuration. f. To plot the output characteristics of the CS configuration. f. To plot the transfer characteristics and hence to obtain trans conductance (<i>gm</i>) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UIT and to obtain the values of <i>I</i>. <i>I</i>. <i>I</i>. <i>V</i>. <i>V</i>. <i>V</i>. (stat) (ii). To plot the output characteristics of UIT and to obtain the value of R^{BB} (iii). To plot the output characteristics of UIT and to obtain the value of R^{BB} (iii). To blot the transfer data can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12.To design analog to digital converter (ADC) of given specifications. 13.To design digital to analog converter (DAC) using ladder network. 14.Electronic voltmeter (i). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		different indices of modulation									
 (I). To sketch the constant of the <i>RC</i> time constant. 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the output characteristics of the CS configuration. c. To plot the output characteristics and hence to obtain trans-conductance d. To measure V_p. e. To plot the transfer characteristics of the CS configuration. f. To plot the output characteristics and hence to obtain trans-conductance (<i>g</i>^m) g. To plot the transfer characteristics and hence to obtain trans conductance (<i>g</i>^m) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10. Experiment on Uni-Junction Transistor and its application. (i). To plot the output characteristics of UJT and to obtain the values of □, <i>I</i>p, Vv, Iv, Ve(sat) (ii). To plot the output characteristics of UJT and to obtain the value of R_{BB} (iii). To blot the output characteristics of UJT and to obtain the value of R_{BB} (iii). To study the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design digital to analog converter (ADC) of given specifications. 13. To destermine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (i). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications.		(ii) To sketch the demodulated signal for a particular modulating signal and modulation index									
 8. To determine the energy band gap in p-n junction diode. 9. Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the output characteristics of the CS configuration. c. To plot the transfer characteristics and hence to obtain trans-conductance d. To measure V_p e. To plot the output characteristics of the CS configuration. f. To plot the transfer characteristics and hence to obtain trans-conductance (g_m) g. To plot the output characteristics and hence to obtain trans conductance (g_m) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10. Experiment on Uni-Junction Transistor and its application. (i) To plot the input characteristics of UJT and to obtain the values of [], IP, Vv,Iv, Ve(sat) (ii). To plot the output characteristics of UJT and to obtain the value of R_{BB} (iii). To blot the output characteristics of UJT and to obtain the value of R_{BB} (iii). To blot the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14. Electronic voltmeter (i). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications.		for three values of the <i>RC</i> time constant									
 90 Experiment on FET and MOSFET characterization and application as an amplifier. a. To measure V_p. b. To plot the output characteristics of the CS configuration. c. To plot the transfer characteristics and hence to obtain trans-conductance d. To measure V_p e. To plot the output characteristics of the CS configuration. f. To plot the transfer characteristics and hence to obtain trans conductance (g_m) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UJT and to obtain the values of □, <i>I</i>_P, Vv, Iv, V_{e(sut)} (ii). To plot the output characteristics of UJT and to obtain the value of R_{BB} (iii). To study the working of a UJT saw tooth generator 11.To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12.To design analog to digital converter (DAC) using ladder network. 14.Electronic voltmeter (i). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier onfigurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 	ſS	8 To determine the energy hand gap in p-p junction diode									
 a. To measure V_p. b. To plot the output characteristics of the CS configuration. c. To plot the output characteristics and hence to obtain trans-conductance d. To measure V_p e. To plot the output characteristics of the CS configuration. f. To plot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics and hence to obtain trans conductance (g_m) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UJT and to obtain the values of □, <i>I</i>_P, Vv, Iv, V_{e(sut)} (ii). To plot the output characteristics of UJT and to obtain the value of R_{BB} (iii). To study the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (DAC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14.Electronic voltmeter (i). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier onfigurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 	no	9 Experiment on EFT and MOSEFT characterization and application as an amplifier									
 b. To hetastic vp. b. To plot the output characteristics of the CS configuration. c. To plot the transfer characteristics and hence to obtain trans-conductance d. To measure Vp e. To plot the output characteristics of the CS configuration. f. To plot the transfer characteristics and hence to obtain trans conductance (gm) g. To plot the transfer characteristics and hence to obtain trans conductance (gm) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UJT and to obtain the values of [], lp, Vv, Iv, Ve(set) (ii). To plot the output characteristics of UJT and to obtain the value of RBB (iii). To study the working of a UJT saw tooth generator 11.To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12.To design analog to digital converter (ADC) of given specifications. 13.To design digital to analog converter (DAC) using ladder network. 14.Electronic voltmeter (i). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 	Η	To measure V.									
 c. To plot the unput characteristics of the CS configuration. c. To plot the transfer characteristics and hence to obtain trans-conductance d. To measure V_p e. To plot the output characteristics of the CS configuration. f. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UJT and to obtain the values of □, <i>I</i>_P, Vv,Iv, V_{e(sat)} (ii). To plot the output characteristics of UJT and to obtain the value of R_{BB} (iii). To plot the output characteristics of UJT and to obtain the value of R_{BB} (iii). To study the working of a UJT saw tooth generator 11.To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12.To design analog to digital converter (ADC) of given specifications. 13.To design digital to analog converter (DAC) using ladder network. 14.Electronic voltmeter (i). To determine their internal resistances, (ii). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 	30	b. To plot the output characteristics of the CS configuration									
 d. To measure V_P e. To plot the transfer characteristics of the CS configuration. f. To plot the transfer characteristics of the CS configuration. g. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UJT and to obtain the values of □, <i>I</i>_P, Vv, Iv, Ve(sat) (ii). To plot the output characteristics of UJT and to obtain the value of R_{BB} (iii). To study the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14. Electronic voltmeter (i). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		c. To plot the transfer characteristics and hence to obtain trans conductance									
 e. To plot the output characteristics of the CS configuration. f. To plot the transfer characteristics and hence to obtain trans conductance (gm) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UJT and to obtain the values of [], IP, Vv,Iv, Ve(sat) (ii). To plot the output characteristics of UJT and to obtain the value of RBB (iii). To study the working of a UJT saw tooth generator 11.To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12.To design analog to digital converter (ADC) of given specifications. 13.To design digital to analog converter (DAC) using ladder network. 14.Electronic voltmeter (i). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		d. To measure V _n									
 f. To plot the output that acteristics of the CS conductance. f. To plot the transfer characteristics and hence to obtain trans conductance (gm) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UJT and to obtain the values of [], <i>I</i>P, Vv, Iv, Ve(sat) (ii). To plot the output characteristics of UJT and to obtain the value of RBB (iii). To study the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14. Electronic voltmeter (i). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		a. To plot the output characteristics of the CS configuration									
 g. To plot the transfer transfer state rate tender to obtain trans conductance (gm) g. To plot the frequency response of the CS FET amplifier with and without feedback. 10.Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UJT and to obtain the values of □, IP, Vv,Iv, Ve(sat) (ii). To plot the output characteristics of UJT and to obtain the value of RBB (iii). To study the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14. Electronic voltmeter (i). To plot the frequency response of the same. 16. To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		f. To plot the transfer characteristics and hence to obtain trans conductance (a_i)									
 10. Experiment on Uni-Junction Transistor and its application. (i). To plot the input characteristics of UJT and to obtain the values of □, IP, Vv,Iv, Ve(sat) (ii). To plot the output characteristics of UJT and to obtain the value of RBB (iii). To study the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14. Electronic voltmeter (i). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		π To plot the transfer characteristics and hence to obtain trans conductance (g_m)									
 (i). To plot the input characteristics of UJT and to obtain the values of □, IP, Vv, Iv, Ve(sat) (ii). To plot the output characteristics of UJT and to obtain the value of RBB (iii). To study the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14. Electronic voltmeter (i). To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		10 Experiment on Uni Junction Transistor and its application									
 (i). To plot the input characteristics of UJT and to obtain the values of [], P, VV,IV, Ve(sat) (ii). To plot the output characteristics of UJT and to obtain the value of RBB (iii). To study the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14. Electronic voltmeter (i). To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		(i) To also the input of expectation of LUT and to also in the values $(\Box I X I X)$									
 (ii). To plot the output characteristics of UJ1 and to obtain the value of RBB (iii). To study the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14. Electronic voltmeter (i). To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		(1). To plot the input characteristics of UJT and to obtain the values $of \sqcup$, IP , VV , Iv , $Ve(sat)$									
 (iii). To study the working of a UJT saw tooth generator 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14. Electronic voltmeter (i). To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		(ii). To plot the output characteristics of UJI and to obtain the value of RBB									
 11. To design a circuit that can be used for addition and subtraction of two given four bit binary numbers using transistors/diodes. Explain its working and verify the result. 12. To design analog to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14. Electronic voltmeter (i). To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		(111). To study the working of a UJT saw tooth generator									
 numbers using transistors/diodes. Explain its working and verify the result. 12.To design analog to digital converter (ADC) of given specifications. 13.To design digital to analog converter (DAC) using ladder network. 14.Electronic voltmeter (i). To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		11. To design a circuit that can be used for addition and subtraction of two given four bit binary									
 12. To design analog to digital converter (ADC) of given specifications. 13. To design digital to analog converter (DAC) using ladder network. 14. Electronic voltmeter (i). To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the same. 16. To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		numbers using transistors/diodes. Explain its working and verify the result.									
 13.To design digital to analog converter (DAC) using ladder network. 14.Electronic voltmeter (i). To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		12. To design analog to digital converter (ADC) of given specifications.									
 14.Electronic voltmeter (i). To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		13. To design digital to analog converter (DAC) using ladder network.									
 (i). To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter and to determine their internal resistances, (ii). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. 		14.Electronic voltmeter									
and to determine their internal resistances, (ii). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications.		(i). To determine, the percentage error for, the ordinary voltmeter and electronic voltmeter									
 (ii). To plot the frequency response of the same. 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. . 		and to determine their internal resistances,									
 16.To examine the properties of the MOS amplifier configurations, and to investigate their small signal performance. To design a multi-stage CMOS amplifier of a given specifications. . 		(ii). To plot the frequency response of the same.									
signal performance. To design a multi-stage CMOS amplifier of a given specifications.		16.To examine the properties of the MOS amplifier configurations, and to investigate their small									
To design a multi-stage CMOS amplifier of a given specifications.		signal performance.									
·		To design a multi-stage CMOS amplifier of a given specifications.									
		· ·									

	e-Resources / e-books and e-learning portals for Physics
səɔ.	Use of following sites
Inc	https://www.e-booksdirectory.com/physics.php
esc	https://www.pdfdrive.com/category/66
i re	https://www.e-booksdirectory.com/listing.php?category=2
ne	https://www.openculture.com/free-physics-textbooks
lli	https://bookboon.com/en/physics-ebooks
0	https://www.pdfdrive.com/
	https://zlibrary.to/
	Basic Electronics: A text lab manual by Paul Zbar, Albert Malvino, Michael Miller
Q	
ET SX	
ES IO	
GG BO	
N S	

Discipline Specific Elective Course (DSEPHY-10)

Semester-VIII

Paper: Applied Optics

Course Learning Outcomes

Course Learning Outcomes

After completing the course the students will able to : -

CO-01: Understand basic lasing mechanism qualitatively, types of lasers, characteristics of laser light and its application in developing LED, Holography.

CO-02: Gain concepts of Fourier optics and Fourier transform spectroscopy.

CO-03: Understand basic principle and theory of Holography.

CO-04: Grasp the idea of total internal reflection and learn the characteristics of optical fibers.

MAPPING OF CO (COURSE OUTCOME) AND PO (PROGRAMME OUTCOME):

POs COs	PO-01	PO-02	PO-03	PO-04	PO-05	PO-06	PO-07	PO- 08	PO-09	PO- 10	PO-11
CO-01	\checkmark	~			~						~
CO-02			~				~				
CO-03					~		~		√		
CO-04	✓		~					~			√

B.SCVI	II EIGHTH SEMESTER COURSE CODE: DSEPHY-10									
PAPER C	PAPER CODE: PDSEC-10 Credit: (Theory-03, Practical-01), Theory: 45 Hrs, Practical: 30 Hrs									
PAPER T	PAPER TITLE: Applied Optics									
THEORY PRACTIC	THEORY MARKS: 100 (SEE-80 & CCA-20) PRACTICAL: 50									
Question	Pattern-i) Objective Type Question-MCQ, Fill up the blanks, True/False, Total- 10 Q. ii) Very Short Answer Type- Word Limit 70-100, Total-5 Q. iii) Short Answer Type- Word Limit 200-250, Total-5 Q. iv) Long Answer Type- Word Limit 500-600, Total-5 Q.									
UNIT-1 12 Hours	Lasers: an introduction, Planck's radiation law (qualitative idea), Energy levels, Absorption process, Spontaneous and stimulated emission processes, Theory of laser action, Population of energy levels, Einstein's coefficients and optical amplification, properties of laser beam, Ruby laser, He-Ne laser, and semiconductor lasers; Light Emitting Diode (LED) and photo-detectors.									
UNIT-2 12 Hours	Fourier Optics and Fourier Transform Spectroscopy (Qualitative explanation) Concept of Spatial frequency filtering, Fourier transforming property of a thin lens, Fourier Transform Spectroscopy (FTS): measuring emission and absorption spectra, with wide application in atmospheric remote sensing, NMR spectrometry, and forensic science.									
UNIT-3 10Hours	Holography: Basic principle and theory: recording and reconstruction processes, Requirements of holography- coherence, etc. Types of holograms: The thick or volume hologram, Multiplex hologram, white light reflection hologram; application of holography in microscopy									
UNIT-4 11 Hours	Optical fibres: Total Internal Reflection, Basic characteristics of the optical fibre: Principle of light propagation through a fibre, the coherent bundle, The numerical aperture, Attenuation in optical fibre and attenuation limit; Single mode and multimode fibres, Fibre optic sensors: Fibre Bragg Grating.									
SUGGESTED READINGS	 Introduction to Fourier Optics, Joseph W. Goodman, The McGraw- Hill, 1996. Introduction to Fiber Optics, A. Ghatak & K. Thyagarajan, Cambridge University Press. Fibre optics through experiments, M.R.Shenoy, S.K.Khijwania, et.al. 2009, Viva Books Optical Electronics, Ajoy Ghatak and K. Thyagarajan, 2011, Cambridge University Press. Optics, Karl Dieter Moller, Learning by computing with model examples, 2007, Springer. 									

t) n	Peer/Micro teaching, Class Seminar, Quiz, Group Discussion
redi	
ract 2 Cı	
[0]	

B.Sc.-VIII

EIGHTH SEMESTER

COURSE CODE: DSEPHY-10LAB

PAPER CODE: PDSEC-10P Credit: Practical-1, Practical: 30 Hours

PAPER TITLE: DSEC-LAB: APPLIED OPTICS

PRACTICAL MARKS: 50

Topics (Course contents)

A tentative list lab work that can be amended by teacher /department concerned.

Teacher may give long duration project based on this paper

Sessions on the construction and use of specific measurement instruments and experimental apparatuses used in the physics lab, including necessary precautions.

Sessions on the review of experimental data analysis, sources of error and their estimation in detail, writing of scientific laboratory reports including proper reporting of errors. Application to the specific experiments done in the lab.

Experiments on Lasers:

- a. To determine the grating radial spacing of the Compact Disc (CD) by reflection using He-Ne or solid-state laser.
- b. To find the width of the wire or width of the slit using diffraction pattern obtained by a He-Ne or solid-state laser.
- c. To find the polarization angle of laser light using polarizer and analyzer.
- d. Thermal expansion of quartz using laser.
- e. To determine the wavelength and angular spread of laser light by using plane diffraction grating.

Experiments on Semiconductor Sources and Detectors:

- a. V-I characteristics of LED
- b. Study the characteristics of solid-state laser.
- c. Study the characteristics of LDR
- d. Characteristics of Photovoltaic Cell/ Photodiode. e. Characteristics of IR sensor

Experiments on Fourier Optics:

- a. Optical image addition/subtraction.
- b. Optical image differentiation
- c. Fourier optical filtering
- d. Construction of an optical 4f system

Experiments on Fourier Transform Spectroscopy

To study the interference pattern from a Michelson interferometer as a function of mirror separation in the interferometer. The resulting interferogram is the Fourier transform of the power spectrum of the source. Analysis of experimental interferograms allows one to determine the transmission characteristics of several interference filters. Computer simulation can also be done.

Experiments on Holography and interferometry:

- b. Recording and reconstruction of holograms (Computer simulation can also be done).
- c. To construct a Michelson interferometer or a Fabry Perot interferometer.
- $d. \ \ To determine the wavelength of sodium light by using Michelson's interferometer.$
- e. To measure the refractive index of air.

Experiments on Fibre Optics

a. To measure the numerical aperture of an optical fibre.

	e-Resources / e-books and e-learning portals for Physics
nline resources	Use of following sites
	https://www.e-booksdirectory.com/physics.php
	https://www.pdfdrive.com/category/66
	https://www.e-booksdirectory.com/listing.php?category=2
	https://www.openculture.com/free-physics-textbooks
	https://bookboon.com/en/physics-ebooks
ō	https://www.pdfdrive.com/
	https://zlibrary.to/